Playstation Emulation Guide

Lionel Flandrin

June 27, 2021

Contents

1__Introductionl 6
[1.1 Isn’t emulation complicated?| 6
L2 TFeedback 6

2 The CPU: Instructions and the memory| 6
[2.1 What is a CPU, anyway? 6
22 Architecturel. 7
B3 Thecoddo oo 7
2.4 The Program Counter register|. 7

2.4.1 Reset valueof the PCI 9
[2.5 _The Playstation memory map| 9

P51 Implomonting the mMomory Wap . « . « . « « « o v .« . . 10
............................... 10
2.7 Loading the BIOS| 11
2.8 The interconnectl oL, 12
[2.9 Gluing the interconnect to the CPUl 14
|2.10 Instruction decoding| 16
[2:1T General purpose registers], 17

[2.11.1 The $zero register] 18

2.11.2 The $raregister] 18
[2.12 Special purpose registers| oo 18
[2.13 Implementing the general purpose registers| 19
214 LUlmstructionl oo o oo o 20
2.15 ORIinstructionl oo 20
2.16 Writing to memory|o oo 21

12.16.1 Unaligned memory access| 22

12.16.2 Expansion mapping| 23
[2.17 Sign extension| Lo 23
218 SWnstructionlo oo 25
2.19 SLL instructionl o Lo oo 25
2.20 ADDIU instructionlo oo 27
2.21 RAM configuration register| 28
222 Tinstructionl 28
2.23 Branch delay slots| 29
2.24 OR instructionl Lo 30
2.25 Type safety in the register interface|l. 31
2.26 CACHE_CONTROL register] 32
[2.27 The coprocessors| 32
228 MTCO nstructionl oo 33
229 BNE instruction] L. 34
2.30 ADDlinstructionf oL o 35
2.31 Memory loads|. o 36
2.32 Load delay slots|. 37
233 LW mstruction| oo 39
E3TThe RAMI .« o o oo oo e e e e e 40
[2.35 The coprocessor O registers| 41
2.36 SUTU instructionl« o oo oo 42
237 ADDU nstructionlo oo 42

239 SHinstructionl oo 44
2.40 SPU registers| Lo 45
2.41 JAL instruction|. Lo 46
2.42 ANDI instructionlo oo 47
243 SBinstruction] Lo 47
2.44 Expansion 2|o o 48
2.45 JR instructionlo 48
2.46 LB instructionlo oo 48
2.47 BEQ instruction| Lo 50
[2.48 Expansion 1|.o 50
2.49 vte access| Lo 51
2,50 MFCOQ instructionl. 51
251 AND imstructionlo Lo 52
252 ADD mstructionl oo 52
[2.53 Interrupt Control registers|. 53
204 BGIZ mstructionlo oo 54
250 BLEZ mstructionlo oo 54
256 LBU instructionl oo 55
257 JALR nstructionlo oo 55
2.58 BLTZ, BLTZAL, BGEZ and BGEZAL instructions| 55
209 SUTTmstructionlo oo oo 57
2.60 SUBU instructionl.o oo 57
2.61 SRA instruction]o oo 57
2.62 DIV instructionl oL o 58
2.63 MFLO instruction| L. 60
2.64 SRI mstruction|. Lo 60
2.60 SUTIU mstructionlo o oo oo 61
B66 DIVU Instructionl . . . « « « v v v v v o e 61
2.67 MEHI instructionf.o oo 62
2.68 SUT instruction|« . Lo Lo 62
2.69 Interrupt Controlread| 62
2.70 Timer registers| Lo 63
2.71 Exceptions| 63
2.72 SYSCALL instructionlo Lo 66

67

68

68

69
2.77 ADD and ADDI overflows 71
[2.78 Store and load alignment exceptions| 72
2.79 PC alignment exception| 73
280 RAM I6bit storel 73
2.81 DMA registers| 74
2.82 LHU instructionl 75
2.83 SULV instructionlo 76
2.84 LH struction| oo oo 77
2.8 NOR mstructionl 0oL 77
2.86 SRAV instruction|.o o oo 78
2.87 SRUV instructionl oo oo 78

2.89 GPU registers|. o o 79
12.89.1 GPO: Draw Mode Setting command| 80

12.90 Interrupt Control 16bit access|. 81
2.91 Timer registers 32bit access| 81
[2:92 GPUSTAT “DMA ready” field 82
293 XOR instructionlo 83
294 BREAK instructions|o oL 83
295 MUDT mstructionlo L 84
296 SUB mstruction|.o 84
297 XORImmstructionl Lo 85
[2.98 Copl, cop2 and copd opcodes| 85
2.99 Non-aligned reads| 86
2.99.1 LWL instructionlo 87
2.99.2 LWR mstructionl 88
[2.100Non-aligned writes| o o 89
2.100.15WL struetionlo o000 89
2.100.25WR nstructionlo o000 89
[2.101Coprocessor loads and stores| 90
2.101.1 LWCn instructionslo o oL 90
2.101.25WCn mstructions|o o000 91
[2.1021Illegal instructions| L 91
[3 The DMA: Ordering tables and the GPU] 93
3.1 DMA Control register| 94
3.2 DMA Interrupt register] 96
3.3 annel Control register] 97
8.4 DMA Base Address register| 102
8.5 DMA Block Control register|. 103
3.6 Depth Ordering Tables|. 104
[3.7 _DMA Clear Ordering Table channel 105
3.8 lockcopy] oo 107
B9 DMATInked TASES « v v v v v e e e e 110
8.10 RAM to device GPU block copy| 111
4_The GPU: Internal state and first commands| 112
4.1 GPUSTAT register|, 113
4.2 GPO Dram Mode Setting command|. 117
K43 GPO NOP command|00 118
M4 GPI1 Soft Reset commandl 119
4.5 The GPU renderer and the video output|. 121
[£:6 GPUREAD register placeholder]. 122
4.7 GP1 Display Mode command| 122
4.8 GP1 DMA direction command| 123
4.9 DMA GPO commands 123
4.10 _GPO Set Drawing Area commands| 123
[£11T GP0 Set Drawing Offset command] 124
4.12 GPO Texture Window commandl 125
4.13 GPO Mask Bit Setting command| 125
4.14 GP1 Display VRAM Start command| 125

Al Al Al

4.19 GPO Load Image command|
[4.20 DMA image transfer|

21 T Display Enable command|
122 GP0 Image Store command]|
4.23 GPO Shaded Quadrilateral command|
4.24 GPO Shaded Triangle command|.
[4.25 GPO Textured Quadrilateral With Color Blending command|. . .

[4.26 1 Acknowledge Interrupt command|

|5 The GPU: Basic OpenGL renderer for the boot logo|

5.1 indow an pen context creation|
.2 Drawing the primitives|. v o it
0.3 The vertex shader],
p.4 The fragment shader| oL
[5.5 Compiling and linking the shaders|
|5.6 Vertex array objects| o o
6.7 OpenGL rendering and synchronization|
b.8 OpenGL debuggingl. 0oL
p.9 Drawing quadrilaterals| 0000
5.10 Draw Offset emulationl
b.11 Handling SDL2 events and exiting cleanly|

6 The Interconnect: Generic loads and stores|

[6.1 Porting the CPU codel,
6.2 Porting the interconnect code|
6.3 orting the and BIOS|.o
6.4 Porting the GPU code|l
6.5 Porting the DMA code|.

|7 The Debugger: Breakpoints and Watchpoints|
7.1 Debugger memory access|.
[7.2 Breakpomts| oo
[7.3 _Watchpoints|. L.
[74 Code disassembly and beyond]

[8.1 Instruction cache lookup behavior|

1 Introduction

This is my attempt at documenting my implementation of a PlayStation emulator
from scratch. T’ll write the document as I go and I'll try to explain as much as
possible along the way. You can find the complete source of the emulator itself
in my GitHub repository.

Since my favourite passtime is to reinvent the wheel and recode things that
already exist I decided that this time I might as well document it. This way
maybe this time something useful will come out of it and it’ll give me a motivation
to finish it.

I will be using the Rust programming language but this is not meant as a
Rust tutorial and knowledge of the language shouldn’t be necessary to follow
this guide, although it won’t hurt.

1.1 Isn’t emulation complicated?

Emulation requires some low-level knowledge about how computers work and
some basics in electronics might help for certain things. Since this doc is meant as
an introduction to emulation I'll assume that the reader doesn’t bring anything
with them beyond some decent programming skills. So don’t worry if you're not
familiar with registers, cache, memory mapped 10, virtual memory, interrupts
and other low level fun: I’ll try to explain everything when needed. Emulators
are a good introduction to low level programming without having to bother with
that pesky hardware in person!

Since this is supposed to be a general guide about writing PlayStation
emulators I won’t put the entire source code of the emulator here, only snippets
relevant to the matter beind discussed.

Finally, keep in mind that getting a PlayStation emulator even capable to
run some games decently will require quite a lot of work. Don’t expect to play
Final Fantasy VII on your brand new emulator in two days. If you want to start
with something simpler to see if you have a taste for it you can search for Chip-8,
Game Boy or NES emulation tutorials (by increasing complexity).

1.2 Feedback

If some part of this document is unclear, poorly written or incomplete please
submit an issue so that I can fix or complete it. Corrections for grammar, syntax
and typos are very welcome. Thank you!

Ready? Let’s begin!

2 The CPU: Instructions and the memory

2.1 What is a CPU, anyway?

That might seem like a silly question to some but I'm sure there are plenty
of competent programmers out there who are used to program in high level
managed environements haven’t seen a register in their entire life. Let me make
the introductions.

For our first version of the PlayStation CPU I'm going to make some simpli-
fying assumptions. I'm going to ignore the caches for instance and assume that

https://github.com/simias/psx-rs

it directly accesses the system bus. Basically we’re going to implement a Von
Neumann architecturel As we make progress we’ll have to revisit this design to
add the missing bits when they are needed.

The objective of this section is to implement all the instructions and try to
reach the part of the BIOS where it starts to draw on the screen. As we’ll see
there’s a bunch of boring initialization code to run before we get there.

There are 67 opcodes in the Playstation MIPS CPU. Some take one line to
implement, others will give us more trouble. In order to make the process more
interactive and less tedious we’ll implement them as they’re encountered while
we’re running the original BIOS code. This way we’ll immediately be able to see
our emulator in action.

But first things first, before we start implementing instructions we need to
explain how a CPU works.

2.2 Architecture

A simple Von Neumann architecture looks like this: the CPU only sees a flat
address space: an array of bytes. The PlayStation uses 32bit addresses so the
CPU sees 1 << 32 addresses. In other words it can address 4GB of memory.
That’s why the PlayStation is said to be a 32bit console (that and the fact that
it uses 32bit registers in the CPU as we’ll see in a minute).

This address space contains all the external ressources the CPU can access:
the RAM of course but also the various peripherals (GPU, controllers, CD drive,
BIOS...). That’s called memory mapped IO. Note that in this context "memory”
doesn’t mean RAM. Rather it means that you access peripherals as if they were
memory (instead of using dedicated instructions for instance). From the point
of view of the CPU, everything is just a big array of bytes and it doesn’t really
know what’s out there.

Of course we’ll have to figure out how the devices and RAM are mapped in
this address space to make sure the transactions end up at the right location
when the CPU starts reading and writing to the bus. But first we need to
understand how the code is executed.

2.3 The code

In this architecture the instructions live in the global address space along with
everything else. Typically in RAM but again, the CPU doesn’t care. If you
want to run code from the controller input port I'm sure the console will let you.
Probably not very useful but it’s all the same as far as the CPU is concerned.

So somewhere in this 4GB address space there’s the next instruction for the
CPU to run. How does it know the address of this instruction? By using a
register of course!

2.4 The Program Counter register

Registers| are very small and very fast special purpose memories built inside
the CPU. Most CPU instructions manipulate those registers by adding them,
multiplying them, masking them, storing their content to memory or fetching it
back. ..

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Processor_register

The Program Counter (henceforth refered to as PC) is one of the most
elementary registers, it exists in one form or an other on basically all computer
architectures (although it goes by various names, on x86 for instance it’s called
the Instruction Pointer, IP). Tts job is simply to hold the address of the next
instruction to be run.

As we’ve seen, the PlayStation uses 32bit addresses, so the PC register is
32bit wide (as are all other CPU registers for that matter).

A typical CPU execution cycle goes roughly like this:

1. Fetch the instruction located at address PC,
2. Increment the PC to point to the next instruction,
3. Execute the instruction,

4. Repeat

We need to know how big an instruction is in order to know how many
bytes to fetch and how much we need to increment the PC to point at the
next instruction. Some architectures have variable length instructions (x86
and derivatives are a common example) which means we’d have to decode the
instruction to know how many bytes it takes. Fortunately for us, the PlayStation
uses a fixed length instruction set (The MIPS instruction set|) and all instructions
are 32bit long.

With all that in mind we can finally start writing some code!

Here’s what the CPU state looks like at that point:

/// CPU state

pub struct Cpu {
/// The program counter register

pc: u32,
}
And here’s the implementation of our CPU cycle described above:
impl Cpu {
pub fn run_next_instruction(&mut self) {
let pc = self.pc;
// Fetch instruction at PC
let instruction = self.load32(pc);
// Increment PC to point to the next instruction.
self .pc = pc.wrapping_-add (4);
self.decode_and_execute (instruction);
}
}

In Rust wrapping_add means that we want the PC to wrap back to 0 in case
of an overflow (i.e. Oxfffffffc + 4 => 0x00000000). We’ll see that most CPU
operations wrap on overflow (although some instructions catch those overflows
and generate an exception, we’ll see that later).

If you're coding in C you don’t need to worry about that if you use uint32_t
since the C standard mandates that unsigned overflow wraps around in this
fashion. Rust however says that overflows are undefined and will generate an

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/MIPS_instruction_set

error in debug builds if an unchecked overflow is detected, that’s why I need to
write pc.wrapping-add(4) instead of pc + 4.

We now finally have some code but it doesn’t build yet.

We're still missing 3 pieces of the puzzle before we can run this piece of code:

e What’s the initial value of PC when starting up?
e How do we implement the fetch32 function?

e How do we implement the decode_and_execute function?

2.4.1 Reset value of the PC

In integrated circuits [reset| is a state where the chip generally does nothing and
its internal state is set to some known default “factory” value. What exactly
the reset does varies from chip to chip (it’s just a convention) but it’s assumed
that a chip will restart in a clean and deterministic state after a reset cycle.

Generally the reset is a dedicated pin on the chip that’s connected to a
button or some other control logic. Sometimes you can also request a ”soft”
reset through software using a specific command or sequence of instructions.
Reseting a chip does necessitate cutting off the power (nor is power cycling an
integrated circuit a good way to reset a chip: if the reset signal is not asserted it
might not load the default values correctly).

When you power up the console or hit the reset button the hardware forces
the CPU (and other peripherals) into a reset state to initialize the logic.

Knowing this it’s pretty obvious that the reset value of the PC is very
important since it’s going to tell the CPU where it should start running the code.
It basically defines the location of the "main” function of the console’s kernel.

The docs say that the reset value of PC is 0xbfc00000. In the playstation
memory map that’s the beginning of the BIOS (we’ll look at the memory map
in greater details in the next section).

Now that we know where our story starts we can write our CPU initializer:

impl Cpu {

pub fn new() — Cpu {
Cpu {
// PC reset value at the beginning of the BIOS
pc: 0xbfc00000 ,

/..

2.5 The Playstation memory map

Our CPU treats all addresses the same way but at some point we’ll have to
dispatch the load/store requests to the correct peripheral. If we read the BIOS
and we get GPU data instead we’re going to run into troubles very quickly. ..
So how do we know what is mapped at some arbitrary address? By using
the memory map| of course!
Here’s an overview of the PlayStation memory map, courtesy of the Nocash
Specs:

https://en.wikipedia.org/wiki/Reset_%28computing%29
https://en.wikipedia.org/wiki/Memory_map
http://problemkaputt.de/psx-spx.htm#cpuspecifications
http://problemkaputt.de/psx-spx.htm#cpuspecifications

KUSEG KSEGO KSEG1 Length | Description
0x00000000 | 0x80000000 | 0xa0000000 | 2048K | Main RAM
0x1£000000 | 0x9£000000 | 0xbf000000 | 8192K | Expansion Region 1
0x1£800000 | 0x9£800000 | Oxb£f800000 1K | Scratchpad
0x1£801000 | 0x9£801000 | 0xb£801000 8K | Hardware registers
0x1£c00000 | 0x9£c00000 | Oxbfc0O0000 512K | BIOS ROM

Table 1: Playstation memory map

Let’s take the time to parse through this.

We can see that most peripherals in table [1] are mapped at several addresses.
For instance if we look at the PC reset value 0xbfc00000 corresponds to the be-
ginning of the BIOS range in region KSEG1. However we can also reach the same
location through addresses 0x1fc00000(KUSEG) and 0x9fc00000(KSEGO).

What’s the point of having those mirrored regions? What’s the difference
between KUSEG and KSEG]1 for instance? Those are memory regions which
are used to specify certain attributes of the memory access. On the Playstation
hardware it’s mostly used to specify whether the access is cached or not.

For now we're going to ignore regions and treat all mappings the same, we’ll
study them more closely later on.

KSEG2 ‘ Length ‘ Description
0xf££fe0000 | 512B | I/O Ports

Table 2: KSEG2 memory map

Table [2| shows the last region: KSEG2. It’s a bit different from the others.
It doesn’t mirror the other regions, instead it gives access to a unique set of
registers. As far as I know the only important register there is the cache control
but there might be others I haven’t encountered yet.

2.5.1 Implementing the memory map

In order to implement the PlayStation memory map in our emulator we will need
an interconnect to dispatch the load/store operations to the correct peripheral.

I don’t know if the PlayStation really has a hardware interconnect. The CPU
could just ”broadcast” the read/write operations on the system bus and the
peripherals would check the address and only answer if it’s for them. However this
design would be inefficient in software: we’d need to iterate over the peripherals
for each transaction until we find the correct receiver.

Instead we’re just going to implement a ”switchboard” that will match the
address to the correct peripheral and forward it there.

Since the first thing the emulator will run is the BIOS we’ll use it as our first
peripheral.

2.6 The BIOS

On the PlayStation the BIOS displays the first screens (with the logos and that
memorable sweeping tune) and starts the game from the CD drive. If no CD is
present it displays a menu that can be used to manage the memory cards and

10

play CDs. As a player that’s probably the only time you’d know there was a
BIOS running.

But that’s just the tip of the iceberg! The BIOS remains loaded at all time
and provides a Basic Input/Output System to the running game. That means
that the game can call into the BIOS to do things like allocating memory, reading
the memory card, common libc functions (gsort, memset...) and many other
things.

We won’t be implementing the BIOS ourselves. It’s possible (and it’s been
done) but that’s a lot of work and probably something you’d want to do once
you have a working emulator. It might also hurt compatibility since many games
are known to patch the BIOS at runtime. The Nocash specs| have more info.

We could dump the BIOS of a console but that requires access to the actual
hardware and the know-how to access the BIOS memory. Fortunately some nice
people have done it for us and these days it’s easy to find BIOS files on the web.

There are many BIOS versions: they change depending on the region, the
hardware revision and patches. Any good dump should work (after all, they all
do more or less the same thing) but if you're following this guide it’s probably
better that we use the same file.

Algorithm ‘ Hash
MD5 924e392ed05558ffdb115408c263dcct
SHA-1 10155d8d6e6e832d6ea66db9bc098321fb5e8ebf

Table 3: SCPH1001.BIN BIOS checksums

I've decided to go for the version named SCPH1001.BIN. The file should be
ezactly 512KB big. Check table [3| to make sure you got the right one.

2.7 Loading the BIOS
Once we got our BIOS the rest is pretty straightforward. We just read the file
into a 512KB buffer:

/// BIOS image

pub struct Bios {
/// BIOS memory
data: Vec<u8>

}
impl Bios {

/// Load a BIOS image from the file located at ‘path*
pub fn new(path: &Path) —> Result<Bios> {

let file = try!(File::open(path));
let mut data = Vec::new();

// Load the BIOS
try!(file . take (BIOS_SIZE) .read_to_end(&mut data));

if data.len() = BIOS_SIZE as usize {
Ok(Bios { data: data })
} else {

Err(Error::new(ErrorKind :: InvalidIlnput ,
"Invalid _BIOS_size”))

11

http://problemkaputt.de/psx-spx.htm#biospatches

}

/// BIOS images are always 512KB in length
const BIOS_SIZE: u64 = 512 % 1024;

We also need to be able to read data from the BIOS. The CPU wants to
read 32bit of data to load the instructions so let’s start by implementing load32:
impl Bios {

/]

/// Fetch the 32bit little endian word at ‘offset *
pub fn load32(&self, offset: u32) —> u32 {

let offset = offset as usize;

let b0 = self.data[offset + 0] as u32;
let bl = self.data[offset + 1] as u32;
let b2 = self.data[offset + 2] as u32;
let b3 = self.data[offset + 3] as u32;

bo | (bl << 8) | (b2 << 16) | (b3 << 24)

A few things to note: offset, as its name implies, is not the absolute address
used by the CPU, it’s just the offset in the BIOS memory range. Remember
that the BIOS is mapped in multiple regions so we’ll handle that in the generic
interconnect code. Each peripheral will just handle offsets in its address range.

In the comment I mention that we read the word in little endian. That’s
important. If you’ve never had to worry about endianess issues before let me
give you the gist.

The basic unit of memory is a byte (8 bits in our case). You cannot address
anything smaller than that. However sometimes you need to store data over
multiple bytes. For instance we’ve seen that our instructions are 4byte long. We
have multiple way to store 4byte words in our ”array of bytes”.

Let’s take an example: you have the 32bit word 0x12345678. You have
multiple way to store that value in 4 consecutive bytes. We can store [0x12,
0x34, 0x56, 0x78] or [0x78, 0x56, 0x34, 0x12] for instance. The former is called
big-endian because we store the most significant byte first. The latter is little-
endian because we store the least significant byte first. There are other endian
types with weirder patterns but they’re not often used is modern computers.
Check wikipedia if you want more details.

The PlayStation is little-endian so we're in the 2nd case: when reading or
writing multi-byte values the least significiant byte goes first. If we do it the
other way around we’ll end up with garbage.

Now we can implement our interconnect to let the CPU communicate with
the BIOS.

2.8 The interconnect

We now have an embryo of a CPU and our first device ready to talk to each
other. We just need to figure out how to link them together.

At that point we could have the CPU talk directly to the BIOS, after all it’s
our only device. Obviously that won’t work for very long however, we need to be

12

https://en.wikipedia.org/wiki/Endianness

able to dispatch the CPU’s loads and stores to the correct peripheral depending
on the address range.

I’'m not quite sure how this is handled on the actual hardware. For simple
buses it’s very possible that the CPU just ”broadcasts” the address to all the
peripherals and each of them just checks if it’s within their address range and
simply ignores the transaction if they see it’s not for them. It’s fast in hardware
because all peripherals work in parallel so there’s no delay induced: they can all
receive and decode the address at the same moment.

Unfortunately we can’t really do that in software: the closest equivalent
would be to spawn a thread for each peripheral. The problem is that memory
transactions are very common (several millions per second potentially) and having
to send data and resynchronize across threads would kill our performances.

Multihreading emulators in general is a very tough issue: for threading to be
really efficient you need to reduce data exchange and resynchronization as much
as possible to let each thread live its life. When we emulate however we want to
mimick the original hardware behaviour and speed as much as possible which
requires very frequent resynchronization and we have plenty of shared state.
The two endeavors are somewhat at odds. That’s not to say multithreading
is impossible in emulators, just that it’s hard. We can’t just spawn threads
willy-nilly.

Anyway, back to our interconnect: since threads are out it means we’ll have
to sequentially match the address against each mapping until we get a match.
Then we can let the selected peripheral handle the transaction.

Let’s do just that:

/// Global interconnect

pub struct Interconnect {
/// Basic Input/Output memory
bios: Bios,

}

impl Interconnect {
pub fn new(bios: Bios) —> Interconnect {
Interconnect {
bios: bios,
}

I’'ve decided to store the BIOS directly in the interconnect struct. We’ll
append the other peripherals there as we implement them. We are going to store
the interconnect inside the struct Cpu which will give us a device tree with the
CPU at the top. It makes the data paths pretty simple: everything goes from
the CPU to the peripherals. It’s easier to reason about than a full “everybody
sees everybody” architecture in my opinion but it might prove limiting as we
progress. We'll see if we need to revise that later.

Now we can finally implement the 1oad32 function that the CPU will be
using. I don’t like having hardcoded constants all over the place so I'm going to
tie the address ranges to nice symbolic names:

mod map {
struct Range(u32, u32);

impl Range {
/// Return ‘Some(offset)‘ if addr is contained in ‘self *

13

pub fn contains(self, addr: u32) —> Option<u32> {
let Range(start, length) = self;

if addr >= start && addr < start + length {
Some (addr — start)

} else {
None
}

}

pub const BIOS: Range = Range(0xbfc00000, 512 % 1024);

If you’re not familiar with rust what this does is create a new type Range
which is a tuple of two values: the start address and length of the mapping.

I also declare a contains methods which takes an address and returns
Some (offset) if the address is within the range, None otherwise. You can think
of it as a form of multiple return values with some nice type-safety on top.

Finally I declare our first range for the BIOS.

Now for the load32 function:

impl Interconnect {

/] ...

/// Load 32bit word at ‘addr®
pub fn load32(&self, addr: u32) —> u32 {

if let Some(offset) = map::BIOS. contains (addr) {
return self.bios.load32(offset);
}

panic!(”unhandled.fetch32_at_address_{:08x}”, addr);

The if let syntax is an other rust nicety: if the contains function returns
Some (offset) we enter the body of the if with offset bound to a temporary
variable. If contains returns None on the other hand the if is refuted and we
don’t enter the body and go straight to the panic! command which will make
our emulator crash.

2.9 Gluing the interconnect to the CPU

The only thing left before we can finally build our code is gluing the Interconnect
with the Cpu.

We add an inter member to the struct Cpu and take an Interconnect
object in the constructor:

/// CPU state
pub struct Cpu {
/// The program counter register
pc: u32,
/// Memory interface
inter: Interconnect ,

}

impl Cpu {

14

pub fn new(inter: Interconnect) —> Cpu {
Cpu {
// PC reset value at the beginning of the BIOS
pc: 0xbfc00000 ,

inter: inter ,

}
//

We can also implement the 1oad32 function for the CPU which will just call
the interconnect.

impl Cpu {

/// Load 32bit value from the interconnect

fn load32(&self, addr: u32) —> u32 {
self.inter.load32 (addr)

}

We're still lacking the decode_and_execute function, let’s use a placeholder
function that just panics for now:
impl Cpu {

/!

fn decode_and_-execute(&mut self , instruction: u32) {
panic!(” Unhandled_instruction.{:08x}”,
instruction);

Finally we can instantiate everything in our main function:

fn main() {
let bios = Bios::new(&Path::new(”roms/SCPHI1001.BIN”)).unwrap () ;

let inter = Interconnect ::new(bios);
let mut cpu = Cpu::new(inter);
loop {

cpu.run_next_instruction () ;

}

I’ve hardcoded the BIOS path for now. It would be better to read it from
the command line, a config file or even some fancy dialog window but it’ll do
nicely for now.

We should now be able to build the code. When I run it, assuming that the
BIOS file was found at the correct location I get:

thread ‘<main>’ panicked at ’Unhandled instruction 3c080013’

As expected the decode_and _execute function died on us but we managed
to fetch an instruction. If you’ve been using the same BIOS file as me you should
have exactly the same value of 0x3c080013. If you got an other value something
is wrong with your code. In particular if you end up with 0x1300083c it means
you're erroneously reading in big-endian.

15

2.10 Instruction decoding

We’ve now fetched our first instruction from the BIOS: 0x3c080013. What do
we do with this?

In order to be able to run this instruction we need to decode it to figure out
what it means. Instruction encoding is of course CPU dependent so we need
to interpret this value in the context of the Playstation |[R3000| processor. Once
again the Nocash specs have our back and list the format of the instruction.
MIPS is a common architecture used outside of the playstation and you can find
plenty of resources online describing its instruction set.

Let’s decode this one by hand to see how this works. If we look at the
“Opcode/Parameter Encoding” table in Nocash’s docs we see that we need to
look at the bits [31:26] of the operation to see what type it is. In our case they
are 001111. That means the operation is a LUI or “Load Upper Immediate”.
Immediate means that the value loaded is directly in the instruction, not indirectly
somewhere else in memory. Upper means that it’s loading this immediate value
into the high 16 bits of the target register. The 16 low bits are cleared (set to 0).

But what are the register and the value used by the instruction? Well we
need to finish decoding it to figure it out: for a LUI bits [20:16] give us the
target register: in our case it’s 01000 which means it’s register 8. Finally bits
[15:0] contain the immediate value: 0000 0000 0001 0011 or 19 in decimal.
Bits [25:21] are not used and their value doesn’t matter.

In other words this instruction puts 0x13 in the 16 high bits of the register 8.
In MIPS assemblyE it would be equivalent to:

| lui $8, 0x13

Enough babbling, let’s implement decoding. First I'll wrap the raw instruction
in a nice interface that will let us extract the fields without doing the bitshifts
and masking everywhere. If you look at the encoding for other MIPS instructions
you’ll see that it’s fairly regular, for instance immediate values are always stored
in the LSBs:

struct Instruction (u32);

impl Instruction {
/// Return bits [31:26] of the instruction
fn function(self) — u32 {
let Instruction(op) = self;

op >> 26

}

/// Return register index in bits [20:16]
fn t(self) — u32 {
let Instruction(op) = self;

(op >> 16) & 0x1f
}

/// Return immediate value in bits [16:0]
fn imm(self) —> u32 {
let Instruction(op) = self;

op & Oxffff

1I'm using the GNU assembler syntax in this guide unless otherwise noted.

16

https://en.wikipedia.org/wiki/R3000
http://problemkaputt.de/psx-spx.htm#cpuspecifications
https://en.wikipedia.org/wiki/MIPS_instruction_set
https://en.wikipedia.org/wiki/Instruction_set

}

The names for the accessor functions match those I've seen used in the various
references to name the various fields.
We can now leverage that fancy interface in decode_and_execute:

impl Cpu {

fn decode_and_execute(&mut self ,

instruction: Instruction) {

match instruction.function () {
0b001111 => self.op-lui(instruction),

instruction.0),

}

/// Load Upper Immediate

fn op_lui(&mut self,

let 1 =
let t =

panic!(”what_now?”);

instruction:
instruction .imm() ;
instruction.t();

=> panic!(” Unhandled_instruction_{:x}",

Instruction) {

We're very close to finally run our first instruction in full but we’re still
missing something: we see that the register field in this instruction is 5bits, that
means it can index 32 registers. But for now we only have one register in our
CPU: the PC. We need to introduce the rest of them.

2.11 General purpose registers

Register Name Conventional use

$0 $zero Always zero

$1 $at Assembler temporary
$2, 83 $v0, $v1 | Function return values
$4...87 $a0...$a3 | Function arguments
$8...815 | $t0...$t7 | Temporary registers
$16...9$23 | $s0...8s7 | Saved registers

$24, $25 $t8, $t9 Temporary registers
$26, $27 | $k0, $k1 | Kernel reserved registers
$28 $ep Global pointer

$29 $sp Stack pointer

$30 $p Frame pointer

$31 $ra Function return address

Table 4: R3000 CPU general purpose registers

Table [4] lists the registers in the Playstation MIPS R3000 CPU (ignoring the
coprocessors for now). They’re all 32bit wide.

You can see that we have 32 registers (30 to $31) which are the general
purpose registers. They’re all given a mnemonic used when writing assembly.

17

For instance, by convention, $29 is the [stack pointer($sp) and $30 holds the
frame pointer| ($fp).

It’s important to understand that those are just a convention between de-
velopers, in the hardware there’s no difference between $29 and $30. The point
of those [calling conventions|is to make it possible to make code generated from
different compilers or written in assembly by different coders remain interopera-
ble. If you write MIPS assembly and want to call third party functions (like the
BIOS functions for instance) you’ll have to adhere to this convention.

Only two general purpose registers are given a special meaning by the
hardware itself: $zero and $ra.

2.11.1 The $zero register

$zero (30) is always equal to 0. If an instruction attempts to load a value in this
register it doesn’t do anything, the register will still be 0 afterwards.

Having a constant 0 register is useful to reduce the size of the instruction set.
For instance if you want to move the value of the register $v0 in $a0 you can
write this:

‘Hmve $a0, $vO
However this “move” instruction is not actually part of the MIPS instruction

set, it’s just a convenient shorthand understood by the assembler which will
generate the equivalent instruction:

| addu $a0, $v0, $zero
We can see that it effectively does the same thing by setting $a0 to the result

of $v0 + 0 but we avoid having to implement a dedicated “move” instruction in
the CPU.

2.11.2 The $ra register

$ra ($31) is the other general purpose register given a special meaning by the
hardware since instructions like “jump and link” or “branch and link” put the
return address in this register exclusively. Therefore the following instruction
jumps in function foo and puts the return address in $ra:

‘jal foo

As we’ll soon see we don’t really have to bother with the various roles assigned
to those general purpose registers when writing our emulator (with the exception
of $zero and $ra) but it’s still useful to know the convention when trying to
understand what some emulated code is doing.

2.12 Special purpose registers

Name ‘ Description

PC Program counter
HI high 32bits of multiplication result; remainder of division
LO low 32bits of multiplication result; quotient of division

Table 5: R3000 CPU special purpose registers

18

https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Call_stack#FRAME-POINTER
https://en.wikipedia.org/wiki/Calling_convention

Table [p| lists the three special purpose CPU registers. We're already familiar
with the PC used to keep track of the code execution. The two others are HI and
LO which contain the results of multiplication and division instructions. Those
cannot be used as general purpose registers, instead there are special instructions
used to manipulate them. We’ll discover them as we implement them.

2.13 Implementing the general purpose registers

I'm just going to represent the 32 general purpose registers as an array of 32 u32
and use the index in the instructions to address them. TI’ll even have an entry
for $zero even though it’s always 0 to avoid special cases. Of course we’ll have
to be careful to always keep its value to 0.
/// CPU state
pub struct Cpu {

/// The program counter register

pc: u32,

/// General Purpose Registers.

/// The first entry must always contain 0.

regs: [u32; 32],

/// Memory interface

inter: Interconnect ,

The registers are not initialized on reset, so they contain garbage value when
we start up. For the sake of our emulator being deterministic I won’t actually
put random values in the registers however, instead I'm going to use an arbitrary
garbage value Oxdeadbeef. We could as well initialize them to 0 but I prefer
to use a more distinguishable value which can be helpful while debugging. We
must remember to put 0 in $zero however.
impl Cpu {

pub fn new(inter: Interconnect) —> Cpu {
// Not sure what the reset values are...

let mut regs = [0Oxdeadbeef; 32];
// ... but RO is hardwired to 0
regs [0] = 0;

Cpu {

// PC reset value at the beginning of the BIOS
pc: 0xbfc00000 ,

regs: regs,

inter: inter ,

}

fn reg(&self, index: u32) —> u32 {
self.regs[index as usize]

}

fn set_reg(&mut self, index: u32, val: u32) {
self.regs[index as usize] = val;
// Make sure RO is always 0
self.regs[0] = 0;

}

//

19

I've also added a getter and a setter. They're very straightforward but I take
care to always write 0 in $zero in case it gets overwritten. I don’t ever bother
checking if the function wrote in this register or an other one, writing a 32bit
value is cheap and probably cheaper than adding an if. It’s also important to
note that the BIOS does try to write to $zero, it is believed that this is useful to
discard an I/O result without having to waste a register.

2.14 LUI instruction

Now we can finally implement our first instruction in fulll Here’s what op_lui
looks like now:

impl Cpu {

/!

/// Load Upper Immediate

fn op_lui(&mut self, instruction: Instruction) {
let i = instruction .imm();
let t = instruction.t();

// Low 16bits are set to 0
let v =i << 16;

self.set_reg(t, v);

Note that the low 16bits are set to 0. It’s important as we’ll see with the
next instruction.

The first instruction in the BIOS uses LUI to put 0x13 in the high 16bits of
$8.

2.15 ORI instruction

We can directly implement the 2nd instruction: 0x3508243f.
It decodes to:

| ori $8, $8, 0x243f

In other words, it puts the result of the bitwise or of $8 and 0x243f back into
$8. The previous LUI initialized the high 16bits of $8 and set the rest to 0 so
this one will initialize the low 16bits.

That’s the simplest way to load a constant in a register with the MIPS
instruction set and that’s why it’s important for LUI to set the low 16bits to 0,
otherwise the ORI wouldn’t do the right thing.

The implementation is straightforward:

impl Cpu {
/o

fn decode_and_execute(&mut self , instruction: Instruction) {
match instruction.function () {
0b001111 => self.op_lui(instruction),
0b001101 => self.op-ori(instruction),
_ => panic!(” Unhandled_instruction._{:x}"”,
instruction.0) ,

20

}

let i
let t
let s

let v

After those two instructions the value of $8 should be 0x0013243f. The next

/// Bitwise Or Immediate
fn op_ori(&mut self, instruction: Instruction) {

instruction .imm() ;
instruction.t();
instruction.s();

self.reg(s) | i;

self.set_reg(t, v);

instruction as an other LUI which puts 0x1£800000 in $1.

2.16 Writing to memory

The next instruction, 0xac281010, is going to give us a little more trouble. It

decodes to the “store word” instruction:
|sw $8, 0x1010($1)

If you're not familiar with GNU assembly syntax the 0x1010($1) syntax
means “address in $1 plus offset 0x1010”. In this case the full instruction is “store
the 32bits in register $8 at the location $1 + 0x1010”. Given the current values
of the $1 and $8 registers it would store 0x0013243f at the address 0x1£801010.

We can implement the storing to memory by mirroring our load32 code:

impl Cpu {
/o

}

}
/!

let i
let t
let s

let v

let addr

/// Store 32bit
fn store32(&mut self, addr: u32, val: u32) {
self.inter.store32(addr, val);

value into the memory

fn decode_and_-execute(&mut self , instruction: Instruction) {
match instruction.function () {
0b001111 => self.op_lui(instruction),
0b001101 => self.op-ori(instruction),
0b101011 => self.op_sw(instruction),

=> panic!(”Unhandled_instruction.{:x}”,

instruction.0),

/// Store Word
fn op_sw(&mut self, instruction: Instruction) {

instruction .imm() ;
instruction.t();
instruction.s();

self.reg(s).wrapping-add(i);
self.reg(t);

self.store32(addr, v);

21

This code for op_sw is actually subtly broken, I’ll explain why in a moment.
For these values of addr and i it’ll do the right thing though. You can see that
we call into the interconnect’s store32 method that we have yet to implement.
Since the only peripheral we support so far is the BIOS ROM and we |can’t write
to it there’s not much we can do at that point, let’s just log the access and panic:

impl Interconnect {

/!

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
panic!(”unhandled_store32_into_address_{:08x}”, addr);

2.16.1 Unaligned memory access

While we're at it I just realized that so far we allow 32bit fetch and store from
and to any address. However the architecture won’t allow unaligned memory
accesses (i.e. 32bit accesses must have an address which is a multiple of 32bits).
Many architectures don’t support unaligned accesses (it generates a “bus error”)
and those who do usually implement it at a cost (unaligned accesses are slower).
I’d rather add some code in the functions to catch unaligned access, it could
help us catch unexpected behaviours when debugging:

impl Interconnect {

/..

/// Load 32bit word at ‘addr®
pub fn load32(&self, addr: u32) —> u32 {

if addr % 4 !'= 0 {
panic!(” Unaligned._load32_address:_{:08x}”, addr);

/...

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self , addr: u32, val: u32) {

if addr % 4 != 0 {
panic!(” Unaligned_store32_address:.{:08x}”, addr);
}

/] ...
}

Once we implement exceptions we’ll be able to handle those conditions

properly.
The code should now compile but unsurprisingly it won’t manage to execute
the SW instruction in full:

’<main>’ panicked at ’unhandled store32 into address 1£801010°

The address is not part of the BIOS and therefore we don’t support it yet.
We can figure out where we’re trying to write by going back to the memory map
in table I} We can see that we end up in the "Hardware registers” range.

22

https://github.com/simias/psx-hardware-tests/blob/master/tests/bios_write/main.s
https://github.com/simias/psx-hardware-tests/blob/master/tests/bios_write/main.s

Looking at the specs we see that registers in this range are for “memory
control”. They’re mainly used to set things like access latencies to the various
peripherals. We’re going to hope we don’t need to emulate those very low level
settings so we’ll ignore the writes to those registers for now.

2.16.2 Expansion mapping

There are two memory control registers we need to be careful about however:
registers 0x1£801000 and 0x1£801004 contain the base address of the expansion
1 and 2 register maps. We could emulate dynamic mappings but apparently on
the Playstation they’re always at 0x1£000000 and 0x1£802000 respectively so
we're just going to hardcode those addresses and raise an error if the BIOS or a
game ever attempts to remap them to something else (which hopefully shouldn’t
ever happen).

impl Interconnect {

/] ..

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
/]

if let Some(offset) = map::MEMCONTROL. contains (addr) {
match offset {
0 => // Expansion 1 base address
if val != 0x1f000000 {
panic!(”Bad_expansion.l_base_address:_0x
{:08x}”, wval);

}’
4 => // Expansion 2 base address
if val != 0x1f802000 {
panic!(”Bad_.expansion.2_base._address:.0x
{:08x}”7, val);
}’
- =

println!(” Unhandled_write.to MEMCONTROL.
register”),

}

return;

}

panic!(”unhandled_store32_into_address_{:08x}”, addr);

And of course we need to declare the MEM_CONTROL constant:

/// Memory latency and expansion mapping

pub const MEM.CONTROL: Range = Range(0x1f801000, 36);

It’s a bit hackish but at least the store will now go through.
Before we move on to the next instruction we need to address the “subtle
brokenness” in our SW implementation I was talking about earlier.

2.17 Sign extension

The reason our current “Store word” extension is broken is because we're not
handling the immediate value correctly. It should be interpreted like a signed
16bit value in a two’s complement representation.

23

https://en.wikipedia.org/wiki/Two%27s_complement

In other words, if the immediate value of the SW was 0xffff it would give
an offset of -1, not +65535.

16bit value | 32bit “unsigned” extended value | decimal unsigned value
0x0000 0x00000000 0

0x0001 0x00000001 1

0x01ad 0x000001ad 429

Oxffff 0x0000ffff 65535

0x83c5h 0x000083c5 33733

16bit value | 32bit sign-extended value decimal signed value
0x0000 0x00000000 0

0x0001 0x00000001 1

0x0lad 0x000001ad 429

Oxffff Oxffffffff -1

0x83c5 Oxff££83cH -31803

Table 6: 16 to 32bit conversion: influence of sign extension

In order to support this we don’t need to add any branching, we just need to
sign extend the immediate value. It means that we increase the width of the
16bit value to 32bit but instead of padding with zeroes we pad with the original
MSB (which is sometimes called the sign bit). This way the signed value remains
the same. See table [6] for some examples.

You can see that for values where the sign bit is not set if we simply pad
the 16 high bits with Os we get the same result in both signed and unsigned
extension. However for values with the MSB set to 1 we have a big difference.
So when we extend values it’s important to know if we’re dealing with signed
or unsigned quantities. We’ll have the same problem with rightwise bitshifts: if
we're shifting signed quantities we have to pad with the sign bit.

It might sounds complicated but it’s very straightforward to implement with
most programming languages, for instance in C, C++ and Rust simply casting
from a 16bit signed integer to a 32bit integer makes the compiler sign-extend
the value. If it didn’t casting a 16bit variable containing -1 into a 32bit variable
would have the final value be 65535 which is obviously not what we want.

We can’t guess which instructions use signed or unsigned immediate values,
it’s described in the MIPS instruction set. For instance our ORI instruction
correctly uses an unsigned immediate value.

The nice thing with two’s complement representation is that while we need to
think about the signedness of the value when bitshifting and widening it doesn’t
matter for most arithmetic operations.

For instance the 16 bit addition Ox0lad + 0x84e0 gives the same result
whether the operands are signed or not: 0x0Olad is 429, 0x84e0 is either 34016 if
it’s unsigned or -31520 if it’s a two’s complement signed value. 429 + 34016 is
34445 or 0x868d in hexadecimal. 429 - 31520 is -31091 or 0x868d in 16bit two’s
complement hexadecimal.

You can see that doing the calculation with signed or unsigned quantities
doesn’t matter: we end up with the same binary pattern.

Therefore we just need to care about the sign when widening the immediate
from 16 to 32 bits and then we can proceed with our usual "unsigned” addition
and we’ll get the correct result whether the offset is negative or positive:

24

https://en.wikipedia.org/wiki/Sign_extension
https://en.wikipedia.org/wiki/Sign_bit

impl Instruction {

/!

/// Return immediate value in bits [16:0] as a sign—extended 32
bit

/// value

fn imm_se(self) —> u32 {
let Instruction(op) = self;

let v = (op & Oxffff) as i16;

v as u32

Note the order of the casts from u32 to i16 back to u32. They might
look useless but that’s what’s forcing the compiler to generate instructions to
sign-extend v.

2.18 SW instruction

We can now use this function to fix op_sw, we just have to replace instruction. imm()
with the new sign-extending instruction.imm se():

impl Cpu {

//

/// Store Word
fn op-sw(&mut self, instruction: Instruction) {

let i = instruction.imm_se();

let t = instruction.t();

let s = instruction.s();

let addr = self.reg(s).wrapping-add(i);
let v = self.reg(t);

self.store32(addr, v);

This version of SW should work correctly even if the offset i is negative.

2.19 SLL instruction

The next instruction is simply 0x00000000. Looks strange but it’s perfectly
valid. As always we start by reading the bits [31:26] which obviously gives us
0b000000. This value however can introduce a number of instructions, to figure
out which one we need to read bits [5:0] which are again full zeroes. By looking
at the instruction set reference we see that these value correspond to a “shift
left logical” (SLL). If we decode the entire instruction we end up with:

‘ sll $zero, $zero, 0O
Obviously this instruction does absolutely nothing since it stores the result
in $zero. This instruction is just the preferred way to encode a NOPﬂ There are

many instruction in the MIPS architecture that behave like NOPs, for instance
using the opcodes we've already encountered we can craft several other NOPs:

2MIPS assemblers actually feature a nop pseudo-instruction that generates this
s1ll $zero, $zero, O instruction.

25

https://en.wikipedia.org/wiki/NOP

lui $zero, 0
ori $zero, $zero, 0
ori $zero, $4, 1234

And there are many others since almost anything targeting $zero is a NOPEL I
think the SLL version is preferred simply because it has this noticeable encoding
of being all 0s.

In this case I can only assume that the NOP is used as a delay, probably
waiting for the previous SW instructions to take effect but I'm not entirely sure
why it’s needed.

In our emulator we won’t special-case this particular instruction, we can just
implement the generic SLL instruction in full. Since NOPs are pretty common
it might make some sense to special-case them but we’ll need to benchmark it
to make sure the cost of the test won’t be greater than computing a useless shift
and storing it in $zero.

Let’s start by implementing the accessors (the shift immediate is only 5bits
since it wouldn’t make sense to shift by more than 31 places and the rest of the
low bits is taken by the “subfunction” part of the instruction):

impl Instruction {

/!

/// Return register index in bits [15:11]
fn d(self) — u32 {
let Instruction(op) = self;

(op >> 11) & 0x1f
}

/// Return bits [5:0] of the instruction
fn subfunction(self) —> u32 {
let Instruction(op) = self;

op & 0x3f
}

/// Shift Immediate values are stored in bits [10:6]
fn shift(self) — u32 {
let Instruction(op) = self;

(op >> 6) & Ox1f

Now that we have our fancy getters ready to parse the instruction we can
implement the opcode itself:

impl Cpu {
/o

fn decode_and_execute(&mut self , instruction: Instruction) {
match instruction.function () {
0b000000 => match instruction.subfunction () {
0b000000 => self.op-sll(instruction),
=> panic!(”Unhandled_instruction.{:08x}”,
instruction.0) ,

} k)

30ne exception would be memory loads which can have side effects even if the value is
discarded in $zero.

26

0b001111 => self.op-lui(instruction),

0b001101 => self.op_ori(instruction),

0b101011 => self.op_sw(instruction),

_ => panic!(” Unhandled_instruction_{:08x}"”,
instruction.0)

}

/// Shift Left Logical

fn op-sll(&mut self, instruction: Instruction) {
let i = instruction.shift ();
let t = instruction.t();
let d = instruction.d();

let v = self.reg(t) << i

self.set_reg(d, v);

Obviously in this case it won’t do anything since it’s a NOP but it should
work correctly when we encounter a “real” SLL instruction.

2.20 ADDIU instruction

After that we encounter the instruction “0x24080b88” which is the “Add Imme-
diate Unsigned” opcode. The name is completely misleading: it seems to say
that the immediate value is treated as unsigned (i.e. not zero-extended instead
of sign-extended) but it’s not the case. The only difference between ADDIU and
ADDI (“Add Immediate”) is that the latter generates an exception on overflow
while the former simply truncates the result. How they got to “unsigned” from
that I have no idea...
Knowing that it’s easy to implement it in our emulatOIEI:

impl Cpu {
/o

/// Add Immediate Unsigned

fn op-addiu(&mut self , instruction: Instruction) {
let i = instruction.imm_se();
let t instruction.t();
let s instruction.s();

let v = self.reg(s).wrapping_-add(i);

self.set_reg(t, v);

If you decode the instruction in full you should end up with:
‘addiu $8, $zero, 0xb88

You can see an other use of the $zero register: this time with the ADDIU
opcode it sets $8 to the immediate value 0xb88. It saves having a dedicated
“Load immediate” opcode.

41’1l skip the code in decode_and_execute from now on, I’'m sure you can figure it out by
yourself. . .

27

2.21 RAM configuration register

This value of 0x00000b88 is then stored at address 0x1£801060.

This register is called RAM_SIZE in the NoCash specs. The exact purpose
of this register remains partially unknown but it seems to be configuring the
memory controller. I assume that this controller is capable of handling various
amounts of RAM for instance and this register lets the BIOS load the particular
configuration needed by the Playstation hardware.

At any rate, since we're trying to emulate the Playstation and not some
generic MIPS computer we probably don’t have to handle this register in any
specific way so it’s hopefully safe to ignore it. I just add a new mapping entry,
ignore the store at this address and move along:

/// Register that has something to do with RAM configuration ,

/// configured by the BIOS
pub const RAMSIZE: Range = Range(0x1£f801060, 4);

After this instruction we get a few NOPs. I suppose that the ram size
configuration takes a few cycle to take effect and the BIOS delays a bit before
continuing.

2.22 J instruction

The next instruction is 0x0b£00054 which is a jump instruction (J). This function
is used to change the value of the PC and have the CPU execution pipeline jump
to some other location in memory.

Jump behaves like a goto: it sets the PC to the immediate value contained
in the instruction. Since the instruction is 32bit wide and the instruction set
uses 6bits to encode the opcode it can only specify 26bits of the ‘PC‘ at once.

To make the most of those 26bits the target address is shifted two places to
the right. It’s not a problem because instructions must be aligned to a 32bit
boundary so the two LSBs of the PC always have to be zero. It means that
the instruction really encodes 28bits of the target address. The remaining 4
high bits are the PC’s MSB and remain untouched. In the case of our current
instruction this makes the target address 0xbfc00150.

You can see that this instruction cannot jump anywhere in RAM, only to an
address within the current 256MB of addressable memory. If the CPU needs to
jump further awayﬂ it’ll have to use an other instruction like JR which takes a
full 32bit register containing the destination address. But we’ll see that soon
enough.

First we need to add an accessor for the 26bit immediate field:

impl Instruction {

//
/// Jump target stored in bits [25:0]
fn imm_jump(self) — u32 {

let Instruction(op) = self;

op & Ox3ffffff

Now we can implement the instruction itself:

5 - -
°For instance to an other region as we’ll see later.

28

problemkaputt.de/psx-spx.htm#memorycontrol

impl Cpu {
/-

/// Jump

fn op-j(&mut self, instruction: Instruction) {
let i = instruction .imm_jump() ;

self .pc = (self.pc & 0xf0000000) | (i << 2);

Looks simple enough but unfortunately it’s broken. Why you ask?

2.23 Branch delay slots

The reason our implementation of “jump” doesn’t work properly is because one
of the simplifying assumptions we made when we started implementing the CPU
does not hold in this case.

Remember when I said that the CPU fetches and execute an instruction at
each cycle, increments the PC and repeats? Well it’s a bit more complicated
than that.

The MIPS architecture is pipelined It means that in order to increase the
throughput of the processor it splits its execution logic across several stages.

While one stage is busy decoding an instruction the instruction fetch stage
could already be loading the next one. It works like an assembly line.

When the code executes linearly (i.e. without jumps or branches) there’s no
problem: while the CPU decodes the instruction at PC the instruction fetch
stage can start loading the value at PC + 4.

But if the instruction being decoded is a jump or a branch things get messy.
The instruction fetch stage cannot know that the previous instruction is supposed
to change the execution path. When the instruction reaches the execution stage
the value of PC gets updated, but it’s too late a spurious instruction has been
fetched into the pipeline already.

So there you are, with an unwanted instruction in your pipeline. What do
you do?

Some architectures opt for flushing the pipeline in those cases. You restart
from the correct address. Of course that’s a costly operation: your CPU has
to wait for the fresh instructions to make it all the way through the pipeline
before getting executed. Many modern architectures do that and that’s why they
generally include complex branch predictors which do their best to guess if a
branch is about to be taken. If they make a bad prediction the pipeline has to be
flushed. That’s one of the main reasons branches are considered expensive (and
why I always overwrite regs[0] in set_reg instead of checking if the register
was 0).

MIPS however doesn’t do that. It doesn’t bother wasting time flushing the
pipeline, it just ignore the issues and run the code anyway. What this means is
that the first instruction right after a branch always gets executed before the
branch is taken, unconditionaly. This instruction is said to be in the branch
delay slot

Consider the following assemblyﬁ

6I’m assuming that the assembler is not asked to reorder the instructions. To get this
behaviour you have to use “.set noreorder” with the GNU assembler.

29

https://en.wikipedia.org/wiki/Classic_RISC_pipeline
https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/Delay_slot

j foo
lui $a0, 0xf00

The LUI instruction gets executed before the code jumps to foo. When the
function is entered $a0 will be equal to 0x0£000000.

Fortunately it’s pretty easy to emulate this behaviour: we just have to do the
same thing the processor does and load the next instruction before we execute
the current one:

/// CPU state
pub struct Cpu {
/// The program counter register
pc: u32,
/// Next instruction to be executed, used to simulate the
branch
/// delay slot
next_instruction: Instruction ,

//
}

impl Cpu {

pub fn new(inter: Interconnect) —> Cpu {

//

Cpu {
// PC reset value at the beginning of the BIOS
pc: 0xbfc00000 ,

//
}

next_instruction: Instruction(0x0), // NOP

pub fn run_next_instruction(&mut self) {
let pc = self.pc;

// Use previously loaded instruction
let instruction = self.next_instruction;

// Fetch instruction at PC
self . next_instruction = Instruction(self.load32(pc));

// Increment PC to point to the next instruction. All
// instructions are 32bit long.

self .pc = pc + 4;

self.decode_and_execute (instruction);

}
//

And now our jumps should behave correctly.

2.24 OR instruction

After the jump there’s a sequence of LUI/ORI/SW used to store a bunch of
values in the SYS_CONTROL registers that we chose to ignore. We then stumbble
upon a new instruction: 0x00000825 which encodes a bitwise or operation:

30

|or $1, $zero, $zero

Unlike ORI which used an immediate value as a 2nd operand this one takes
two register and stores the result in a third one. We can see that in this case
the two source registers are $zero so it just clears $1. The implementation is
fairly straightforward:

impl Cpu {
/o

let
let
let

let

d
s
t

v

/// Bitwise Or
fn op-or(&mut self , instruction: Instruction) {

instruction.d();
instruction.s();
instruction.t();

self.reg(s) | self.reg(t);

self.set_reg(d, v);

The next few instructions use OR to set all the general purpose registers to

2.25 Type safety in the register interface

T've decided to make a modification to our Instruction interface: right now the
helper methods in the Instruction return register indexes as u32. The same
type as the values contained in the registers. Therefore the compiler won’t warn
us if we mess up and use a register index instead of a register value:

impl Cpu {

/!

let
let
let

let

d
s
t

v

/// Bitwise Or
fn op_or(&mut self, instruction: Instruction) {

instruction.d();
instruction.s();
instruction.t();

S

self.reg(t); // Oops...

self.set_reg(d, v);

This code is broken: instead of OR-ing the value of the register number s it
ORs the index s itself. It’s meaningless and obviously wrong and yet it builds

without any error.

Fortunately with a small modification in our code we can have the compiler
reject such code by wrapping register indexes in a new type incompatible with

u32:

| struct RegisterIndex (u32);

Note that this is not like a typedef in C or C++: typedef just creates an
alias which remains compatible (i.e. interchangeable) with the original type.
The equivalent in C would be to wrap the u32 in a struct or something like

that.

31

Then we just have to update our helpers as well as the Cpu::reg and
Cpu: :set_reg methods to use a RegisterIndex instead of a plain u32.

With this modification the compiler will reject the broken op_or implemen-
tation above:

Binary operation | cannot be applied to type cpu::RegisterIndex:
let v = s | self.reg(t);

Hurray for type safety!

2.26 CACHE_CONTROL register

The BIOS then wants to write 0x00000804 to Oxfffe0130. This address is used
for cache control. Since we won’t implement the caches yet we can just add a
log message and ignore this register for the moment:

/// Cache control register
pub const CACHE.CONTROL: Range = Range(0xfffe0130, 4);

2.27 The coprocessors

The next unhandled instruction, 0x408c6000, involves one of the R3000 CPU
COProCessors.

Coprocessors are pieces of hardware which live alongside the CPU and are
accessed through dedicated instructions (instead of memory mapped 1/0 like
external peripherals). They are used to complement and extend the capabilities
of the processor. They each have their own set of registers.

The MIPS R3000 CPU can support up to 4 coprocessors:

e The coprocessor 0 (cop0) is mandated by the MIPS architecture: it’s used
for exception handling. Exceptions are things like hardware interrupts and
traps (divisions by zero, integer overflows, system calls etc...). We'll study
them in greater details when we’ll implement them.

e The coprocessor 1 (copl) is optional: when available it’s used for floating
point arithmetic. You might expect that a videogame console would benefit
greatly from having hardware accelerated floating point and yet copl is
not implemented on the playstation! Instead we have the coprocessor 2.

e The coprocessor 2 (cop2) is, as far as I know, custom made for the Playsta-
tion. At least I can’t find any reference to it outside of the Playstation
hardware. It’s called the ”Geometry Transformation Engine”, or GTE
for short. It implements many instructions dealing with 3D transforms
like perspective transformations, vector and matrix multiplications, color
manipulation etc... It’s basically the first half of the rendering pipeline, the
second half being the GPU (but that one is a memory mapped peripheral,
not a coprocessor).

e The coprocessor 3 (cop3) is not implemented on the Playstation.

Hopefully we shouldn’t have to mess with the GTE until we start encountering
3D code.

32

2.28 MTCO instruction

Back to the 0x408c6000 instruction: the opcode (bits [31:26]) is equal to
0b010000 which means that it’s an instruction for the coprocessor 0. The
generic format is 0b0100nn where nn is the coprocessor number.

impl Cpu {
/]

fn decode_and_-execute(&mut self , instruction: Instruction) {
match instruction.function () {

/-
0b010000 => self.op_copO(instruction),
- => panic!(”Unhandled_instruction._{}”,
instruction),
}

}

/// Coprocessor 0 opcode
fn op-copO(&mut self, instruction: Instruction) {
match instruction.cop_opcode() {
0b00100 => self.op-mtcO(instruction),
- => panic!(”unhandled_copO.instruction.{}”,
instruction)

Instruction: :cop_opcode returns the same bit range as Instruction::s,
however it returns it as a plain u32 instead of a RegisterIndex (since it’s not
a register in this case). You see that the current coprocessor opcode 0b00100
means MTCO or “move to coprocessor 0”. This instruction takes two parameters:
the source register index (one of the CPU’s general registers) and the target
register (one of the coprocessor’s register). Those parameters are respectively in
bits [20:16] and [15:11] of the instruction.

In our current instruciton both of those parameters are equal to 12 so if we
decode the instruction in full it gived}

‘mtcO $12, $cop0-12

The coprocessor register $cop0_12 is very useful: it’s called the “status
register” or SR for short. Among other things it’s used to query and mask the
exceptions and controlling the cache behaviour.

At this point the $12 register contains 0x00010000 so this MT'CO instruction
sets bit 16 of SR which is the “isolate cache” bit. It makes all the following read
and write target directly the cache instead of going through it towards the main
memory. We’re probably in the middle of the cache initialization sequence.

At any rate since we still haven’t implemented anything cache-related we’ll
just store the value of the SR in our Cpu struct and move along;:

/// CPU state
pub struct Cpu {

//
/// Cop0 register 12: Status Register
sr: u32,

7This is actually pseudo-assembly for the sake of clarity. The correct GNU assembler syntax
would be mtcO $12, $12 but it’s a bit too ambiguous for my taste.

33

}

impl Cpu {

/]

pub fn new(inter: Interconnect) —> Cpu {
/.
Cpu {
/]
sr: O,
}

}

fn op-mtcO(&mut self , instruction: Instruction) {
let cpu.r = instruction.t();
let cop-r = instruction.d().0;

let v = self.reg(cpu-r);

match cop.r {
12 = self.sr = v,
n => panic!(”Unhandled_.copO_register:.{:08x}”, n),

Setting the SR to 0 on reset might not be accurate but I doubt it matters
much.

Since the cache is supposed to be isolated all “stores” should end up in the
cache and never in the main memory. Even if we don’t implement the cache we
don’t want the BIOS to start writing at random locations in main memory when
it thinks it writes to the cache so we can start by ignoring all writes when this
isolation bit is set:
impl Cpu {

/!

/// Store Word
fn op_sw(&mut self, instruction: Instruction) {

if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”ignoring._store_while_cache_is_isolated”);
return;

2.29 BNE instruction

We now encounter the instruction 0x154bf££7. It encodes a BNE or “branch
if not equal” instruction. The difference between jumps and branches is that
branches are conditional and they use relative offsets.

The immediate value is sign extended (in order to allow for negative offsets)
and multiplied by 4 (as always, the PC must be aligned to 32bits at all times).
Therefore this instruction decodes to:

34

| bne $10, $11, —36

In other words the instruction will compare the values in $10 and $11 and
if they’re unequal it’ll subtract 36 from the PC. If the values are equal it’ll do
absolutely nothing.

Like jumps, branches have a delay slolﬂ Fortunately our implementation in
section [2.23] already takes care of that without any more work.

I've decided to factor the “branching” code itself in a separate function
because we’ll have to use the same logic in the other branch instructions:
impl Cpu {

/..

/// Branch to immediate value ‘offset ‘.
fn branch(&mut self, offset: u32) {
// Offset immediates are always shifted two places to the
// right since ‘PC‘ addresses have to be aligned on 32bits
at
// all times.
let offset = offset << 2;

let mut pc = self.pc;

pc = pc.wrapping_add (offset);

// We need to compensate for the hardcoded

// ‘pc.wrapping_add(4)‘ in ‘run_next_instruction ¢

pc = pc.wrapping_sub (4);

self.pc = pc;

}

/// Branch if Not Equal
fn op_bne(&mut self , instruction: Instruction) {
let i = instruction.imm_se();

let s = instruction.s();
let t = instruction.t();
if self.reg(s) != self.reg(t) {

self.branch(i);
¥

Notice the wrapping_sub(4) to compensate for our pc.wrapping add(4) in
run_next_instruction. Without it we’d branch one instruction too far.

2.30 ADDI instruction

Before we even reach the target of the branch we stumble upon unhandled
instruction 0x214a0080. This one is an ADDI which behaves exactly like the
ADDIU instruction we’ve already implemented except that it generates an
exception if the addition overflows.

The instruction decodes to:

| addi $10, $10, 128

81t is called a branch delay slot after all. ..

35

Since this operation checks for signed overflow I’ll cast the operands to 132
before using the checked_add provided by rust’s standard libraryﬂ For now
I just panic if we encounter an overflow, we’ll change that when we actually
implement exceptions:
impl Cpu {

/!

/// Add Immediate Unsigned and check for overflow
fn op-addi(&mut self, instruction: Instruction) {

let i = instruction.imm-_se() as i32;
let t = instruction.t();
let s = instruction.s();

let s = self.reg(s) as i32;

let v = match s.checked_add (i) {
Some(v) => v as u32,
None => panic!(”ADDI_overflow”) ,

}s

self.set_reg(t, v);

The cast to 132 is important because something like 0x4 + Oxffffffff is
an overflow in 32bit unsigned arithmetics. If the operands are signed however
it’s simply 4 + -1 and that’s obviously perfectly fine. The actual result of
the operation would be the same (0x00000003) but since ADDI generates an
exception on overflow the difference in behaviour is critical.

2.31 Memory loads
The next unhandled instruction, 0x8d090000 is LW or “load word”. It decodes

to:
|lw $9, 0(88)
We can reuse the 1oad32 method to fetch the data from memory:
impl Cpu {
/..

/// Load Word
fn op_lw(&mut self, instruction: Instruction) {

if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”Ignoring._load_while_cache_is_isolated”);

return;
}
let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

91f you’re implementing this in C or C++ and need to check for signed overflow yourself you’ll
find plenty of examples online. Welcome to the 1970s. Be careful with your implementation
though because signed integer overflow is undefined behaviour in C.

36

let v = self.load32(addr);

self.set_reg(t, v);

There’s a subtle problem with this implementation however.

2.32 Load delay slots

Sounds familiar? It’s our friend the pipeline messing with us once again. What
happens is that the load instructions attempts to read from the memory, but
that takes time. At least, it takes more than a single cycle.

On the R3000 CPU it creates “load delay slots”: when you load a value from
memory the CPU will execute the next instruction before the value is fetched
into the target registeﬂ

Consider this sequence of instructions:
lw $1, 0($zero) /* Load $1 with the value at address 0 x*/

move $2, $1 /* Move $1 in $2 x/
move $3, $1 /* Move $1 in $3 x/

The first MOVE instructiorﬂ is in the load delay slot of the previous LW.
That means that at that point the register $1 does not yet contain the value
loaded into it. So after these two instructions $2 contains the value of $1 before
the load. The 2nd MOVE however takes place after the load delay slot so $3
will contain the final, post-load value of $1.

But it gets worse. Consider the value of $1 after these two instructions:

lw $1, 0($zero) /* Load $1 with the value at address 0 x*/
addiu $1, $zero, 42 /x Put 42 in $1 x/

We first use LW to load something in $1 and then, while the load takes place,
we change the value of $1 with an ADDIU instruction. Who wins?

You might think that since the LW finishes after the load delay slot its fetched
value will override the one set by the ADDIU. It turns out that it’s not the case
however: after those two instructions $1 will contain 42, no matter what the LW
fetched.

It’s a bit of a bad news for us emulator writers. It means we can’t execute
the load before the delay slot because the instruction must see the previous
value of the loaded register (otherwise the first example code above won’t work)
and we can’t just execute it afterwards because it would make the load take the
priority over the delay slot (thus breaking our 2nd example).

One way to see it is that the loaded value ends up in the target register after
the next instruction has fetched the input register values but before the next
instruction updates the target register values. In our first example $1 is an input
register to both MOVEs while in the 2nd it’s the output (destination) register
of the ADDIU.

We could implement it exactly that way by splitting each instruction in two:

10This behaviour is part of the MIPS I architecture. Later revisions (starting with MIPS II)
don’t have load delay slots, only branch delay slots.

1 As T mentioned earlier MOVE is actually a pseudo-instruction that the assembler will
expand into an addu $<target>, $<source>, $zero.

37

e The first part would take the pre-load register values, compute the result
(adding $zero and 10 in the 2nd example example above),

e Then it would execute any pending load,

e Finally it would store the result of the computation in the target register
(31 in the ADDIU). That way the ADDIU will write last.

I don’t really like this solution however because we’ll have to handle load
delays explicitly in all instructions which seems inelegant and error-prone.
Instead I'm going to use two sets of general purpose registers: one will be
the input set and the other the output set. Each instruction will read its input
values from the former set and will write to the latter. Once the instruction is
finished we copy the output set into the input set for the next instruction.
This way we can update the output register set with the load value before
we execute the instruction and it will still see the old value from the input set.
And if the instruction writes to the same register it will overwrite the value in
the output set.
Hopefully it should be clearer in code. First let’s add a 2nd set of registers
and a (register, value) tuple containing the pending load:
/// CPU state
pub struct Cpu {

//

/// 2nd set of registers used to emulate the load delay slot
/// accurately. They contain the output of the current

/// instruction.

out_regs: [u32; 32],

/// Load initiated by the current instruction

load: (RegisterIndex, u32),

}
impl Cpu {
pub fn new(inter: Interconnect) —> Cpu {
/.
Cpu {
out_regs: regs,
load: (RegisterIndex(0), 0),
}
}
}

If no load is pending we can just target $zero since it doesn’t do anything.
Now we can update the set_reg method to target the output register set:

impl Cpu {

fn set_reg(&mut self, index: RegisterIndex, val: u32) {
self.out_-regs[index.0 as usize]| = val;

// Make sure RO is always 0
self.out_regs[0] = 0;

38

1}

Since all our instructions so far use this helper method to update the register
values we won’t have to modify their code at all.

The next step is to update run_next_instruction to handle pending loads
and copying the output registers between every instructions:

impl Cpu {
pub fn run_next_instruction(&mut self) {
/.
// Execute the pending load (if any, otherwise it will load
// $zero which is a NOP). ‘set_reg‘ works only on

// ‘out_regs ‘ so this operation won’t be visible by
// the next instruction.

let (reg, val) = self.load;

self.set_reg(reg, val);

// We reset the load to target register 0 for the next
// instruction

self.load = (RegisterIndex (0), 0);
self.decode_and_execute (instruction);
// Copy the output registers as input for the

// mext instruction
self .regs = self.out_regs;

You can see that we’re copying 128 bytes worth of registers for each instruction
which might not be great performance-wise but at this point I don’t really care
about that.

2.33 LW instruction

We can now write the correct, load-delay friendly implementation of SW:

impl Cpu {

/// Load Word
fn op-lw(&mut self, instruction: Instruction) {

if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”Ignoring.load_while_.cache_is.isolated”);

return ;
}
let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping-add(i);
let v = self.load32(addr);

// Put the load in the delay slot

39

self.load = (t, v);

2.34 The RAM

Unfortunately we can’t test our brand new load delay slot just yet because the
current instruction attemps to load from an unhandled address: 0xa0000000.
The memory mapfI] tells us that this is the first address in RAM.
Adding RAM support is straightforward: it’s very similar to our BIOS

implementation except it boots up uninitialized and it’s not read-only:
/// RAM
pub struct Ram {

/// RAM buffer

data: Vec<u8>

}
impl Ram {
/// Instantiate main RAM with garbage values
pub fn new() —> Ram {
// Default RAM contents are garbage
let data = vec![Oxca, 2 = 1024 % 1024];
Ram { data: data }
}
/// Fetch the 32bit little endian word at ‘offset °
pub fn load32(&self, offset: u32) —> u32 {
let offset = offset as usize;
let b0 = self.data[offset + 0] as u32;
let bl = self.data[offset + 1] as u32;
let b2 = self.data[offset + 2] as u32;
let b3 = self.data[offset + 3] as u32;
b0 | (bl << 8) | (b2 << 16) | (b3 << 24)
}
/// Store the 32bit little endian word ‘val‘ into ‘offset ¢
pub fn store32(&mut self, offset: u32, val: u32) {
let offset = offset as usize;
let b0 = val as u8;
let bl = (val >> 8) as u8;
let b2 = (val >> 16) as u8;
let b3 = (val >> 24) as u8;
self.data[offset + 0] = b0;
self.data[offset + 1] = bl;
self.data[offset + 2] = b2;
self.data[offset + 3] = b3;
}
}

I arbitrarily chose Oxca as the poison value on startup. It’s pretty strange
that the BIOS attempts to fetch data from the RAM before writing anything to
it (and effectively reading garbage) but if you look at the following instructions

40

it repeatedly reads the same address (the first word in RAM) and does nothing
with it. I’'m not sure what this code does but it probably initializes something.
Let’s hope it’s not too important. ..

We can then plug our brand new RAM in the interconnect as usual:

‘pub const RAM: Range = Range(0xa0000000, 2 % 1024 % 1024);

2.35 The coprocessor 0 registers

After that the BIOS wants to initialize the remaining cop0 registers by loading
$zero into them with the MTCO instruction.
Let’s take the time to review those registers:

$cop0_3 is BPC, used to generate a breakpoint exception when the PC
takes the given value.

$cop0_5 is BDA, the data breakpoint. It’s like BPC except it breaks when
a certain address is accessed on a data load/store instead of a PC value.

$cop0.-6: T couldn’t find a lot of informations on this register or what it
does, the consensus seems to be that it’s basically useless.

$cop0_7 is DCIC, used to enable and disable the various hardware break-
points.

$cop0.9 is BDAM, it’s a bitmask applied when testing for BDA above.
That way we could trigger on a range of address instead of a single one.

$cop0_11 is BPCM, like BDAM but for masking the BPC breakpoint.
$cop0_12 we’ve already encountered: it’s SR, the status register.

$cop0_13 is CAUSE, which contains mostly read-only data describing the
cause of an exception. Apparently only bits [9:8] are writable to force an
exception.

You can see that most of those registers (except SR and CAUSE) deal with
hardware breakpoints. That’s generally used for debugging so we shouldn’t need
to emulate those for most games. It’s probably safe to ignore for now. You can
see that the BIOS loads $zero into all of them which disables them.

For now we’re just going to ignore write to these registers when the value is
0. If at some point some game writes something else we’ll catch it and see what
we need to implement:

impl

Cpu {

/// Move To Coprocessor 0
fn op_-mtcO(&mut self , instruction: Instruction) {

let cpu-r = instruction.t();
let cop-r = instruction.d().0;

let v = self.reg(cpu.r);
match cop.r {

31516] 7] 9] 11 = // Breakpoints registers

41

if v =0 {
panic!(” Unhandled_write_to_copOr{}”, cop.r)
}7

12 = self.sr = v,
13 => // Cause register
if v !I=0 {
panic!(” Unhandled_.write_to_ CAUSE_register.”)
}7

- => panic!(”Unhandled_.copO.register_{}”, cop.r),

2.36 SLTU instruction

After that we encounter the instruction 0x0043082b which encodes the “set on
less than unsigned” (STLU) opcode:

‘sltu $1, $2, $3

This instruction compares the value of two registers ($2 and $3 in this case)
and sets the value of a third one ($1) to either 0 or 1 depending on the result of
the “less than” comparison:
impl Cpu {

/]

/// Set on Less Than Unsigned

fn op-sltu(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

let v

self.reg(s) < self.reg(t);

self.set_reg(d, v as u32);

2.37 ADDU instruction

We then stumble upon the instruction 0x03a0f021 which encodes an “Add
unsigned” (ADDU) opcode:

‘addu $30, $29, $zero

You can see that with $zero as the third operand it simply moves $29 in $30,
so in this case it’s really a MOVE instruction.

The instruction is implemented like ADDIU except that we add two registers
instead of a register and an immediate value:

impl Cpu {

/// Add Unsigned

fn op-addu(&mut self , instruction: Instruction) {
let s = instruction.s();
let t = instruction.t();
let d = instruction.d();

42

let v = self.reg(s).wrapping_-add(self.reg(t));

self.set_reg(d, v);

2.38 Regions

Our next problem is an unhandled access at address 0x00000060. If we look at
the memory magI] we see that it’s the RAM. But we’ve already added the RAM
in our interconnect in section [2.34!

The problem is that currently we mapped the RAM at 0xa0000000, in the
KSEGI region. But this time the BIOS attempts to access it through an other
region: KUSEG. We could add multiple mappings for each peripheral in each
region but that would be a waste of code and performance.

Let’s a closer look at how those regions are specified by the MIPS architecture:

e KSEGO starts at 0x80000000 and ends at 0x9fffffff. This region is
accessed through the caches but it’s not mapped through the MMU. In
order to get the physical address we just have to strip the MSB.

e KSEGI starts at 0xa0000000 and ends at Oxbfffffff. This region is not
cached or mapped through the MMU. In order to get the physical address
we just have to strip the three MSBs.

e KSEG?2 starts at 0xc0000000 and ends at Oxffffffff. This region is only
accessed in kernel mode and is also cached and goes through the MMU.

e KUSEG starts at 0x00000000 and ends at 0x7fffffff. It’s meant for
user code and is both cached and goes through the MMU.

All that sounds rather complicated. Fortunately for us since we're targeting
the Playstation and not some generic MIPS architecture we’ll be able to make
some simplifications:

e The Playstation hardware does not have a MMU and therefore no virtual
memory. We won’t have to deal with memory translation.

e The Playstation CPU has 1KB of data cache and an other kilobyte of
instruction cache. However the data cache is not used, instead its memory
is mapped as the ”scratpad” at a fixed location. In other word we don’t
need to implement the data cache.

e As far as I can tell the Playstation software doesn’t seem to use the
kernel /user privilege separation and runs everything in kernel mode.

In other words the only time we’ll need to worry about which region is in use
is when we’ll implement the cache instruction and only for KSEG1 since that’s
the only non-cached region.. For everything else it doesn’t matter through which
region the peripherals are accessed.

In order to solve our issue of having multiple mappings at different addresses
for the same peripherals in different regions we want to compute the unique

43

https://en.wikipedia.org/wiki/Memory_management_unit

physical address corresponding to a memory access and map that through our
interconnect code.

By the descriptions above you see that we should mask a different number
of bits depending on the region. Since KSEG2 doesn’t share anything with the
other regions we won’t touch the address here (otherwise we would allow access
to the RAM through KSEG2 for instance and that wouldn’t be accurate). In
order to avoid branches we can use a nice mask lookup table:

/// Mask array used to strip the region bits of the address. The
/// mask is selected using the 3 MSBs of the address so each entry
/// effectively matches 512kB of the address space. KSEG2 is not
/// touched since it doesn’t share anything with the other
/// regions.
const REGION.MASK: [u32; 8] = |

// KUSEG: 2048MB

Oxffffffff , Oxffffffff |, OxfEffffff |, Oxffffffff |

// KSEGO: 512MB

OxT7EEEffeef |

// KSEG1: 512MB

Ox1fffffff |

// KSEG2: 1024MB

Oxffffffff , Oxffffffff |

1;

/// Mask a CPU address to remove the region bits.
pub fn mask_region (addr: u32) —> u32 {

// Index address space in 512MB chunks

let index = (addr >> 29) as usize;

addr & REGIONMASK[index]

We can now use this mask_region function in our interconnect’s load and
store functions to convert any address coming from the CPU into a unique
physical address used to identify the target peripheral.

We also have to change all our current address map declarations to use
physical addresses:

pub const RAM: Range = Range(0x00000000, 2 % 1024 % 1024);
pub const BIOS: Range = Range(0x1fc00000, 512 % 1024);

/// Unknown registers. The name comes from mednafen.
pub const SYS.CONTROL: Range = Range(0x1f801000, 36);

/// Register that has something to do with RAM configuration ,
/// configured by the BIOS
pub const RAM.SIZE: Range = Range(0x1f801060, 4);

/// Cache control register. Full address since it’s in KSEG2
pub const CACHECONTROL: Range = Range(0xfffe0130, 4);

2.39 SH instruction

The next unhandled instruction is 0xa5200180 which encodes “store halfword”
(SH). It’s used to write 16bits (a halfword) to the memory:

| sh $zero, 0x180(8$9)

44

The implementation is very similar to the “store word” instruction except
we truncate the register to 16bits and we’ll have to implement a new storel6
method on our interconnect 2
impl Cpu {

/!

/// Store 16bit value into the memory

fn storel6(&mut self, addr: u32, val: ul6) {
self.inter.storel6 (addr, val);

}

/// Store Halfword
fn op-sh(&mut self, instruction: Instruction) {

if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”Ignoring._store_while_cache_is_isolated”);

return;
}
let i = instruction.imm-_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);
let v self.reg(t);

self.storel6 (addr, v as ul6);

And in the interconnect:
impl Interconnect {

/] ...

/// Store 16bit halfword ‘val‘ into ‘addr®
pub fn storel6(&mut self , addr: u32, val: ul6) {

if addr % 2 != 0 {
panic!(” Unaligned_storel6._address:._{:08x}”, addr);

panic!(”unhandled_.storel6._into._address.{:08x}”, addr);

I start with an empty function instead of copying the store32 code because
different devices react differently when we change the transaction width. Some
will pad the value to 32bits with zeroes, others may just set 16bits in the register
and leave the others untouched. For this reason I'll be conservative and add
them only when needed.

2.40 SPU registers

If we run that code we see that this storel6 attempts to store 0 at 0x1£f801d80.
Looking at the memory map we see it’s the address of a sound processing

12Having separate functions for various width should make the code easier to follow for now
but it does create some code duplication, later on I'll use generics to factor them in a single
function.

45

unit (SPU) hardware register. At that point we don’t really care for sound so
we're going to ignore writes to these addresses for the time being:

impl Interconnect {

/// Store 16bit halfword ‘val‘ into ‘addr®
pub fn storel6(&mut self , addr: u32, _: ul6) {
if addr % 2 != 0 {
panic!(” Unaligned_storel6._address:._{:08x}”, addr);
let abs_addr = map:: mask_region (addr);
if let Some(offset) = map::SPU.contains(abs_addr) {
println!(” Unhandled_write_to_.SPU_register_{:x}”, offset
return;
}
panic!(”unhandled_storel6._into_address_{:08x}”, addr);
}

}

/// SPU registers
pub const SPU: Range = Range(0x1f801c00, 640);

2.41 JAL instruction

The next unhandled instruction should be 0x0££00698 which is a “jump and
link” (JAL). It behaves like the regular jump instruction except that it also
stores the return address in $ra ($31):

| jal 0xfc01a60

Using this instruction it’s easy to implement function calls: the instruction
is called with JAL and can return to the caller by jumping to the value in $ra.
Then the control returns to the calling function. The $ra register is the link
between the caller and the callee.

We can reuse the regular J opcode implementation and simply add the code
to store the return value in $31:
impl Cpu {

/] ...

/// Jump And Link
fn op-jal(&mut self, instruction: Instruction) {
let ra = self.pc;

// Store return address in $31 ($ra)
self.set_reg (RegisterIndex (31), ra);

self.op_j(instruction);

46

2.42 ANDI instruction

We continue with instruction 0x308400ff which is a “bitwise and immediate”
(ANDI):
| andi $4, $4, Oxff
We can simply copy the implementation of ORI and replace the | with an &:
impl Cpu {
/]

/// Bitwise And Immediate
fn op-andi(&mut self, instruction: Instruction) {

let i = instruction .imm() ;
let t = instruction.t();
let s = instruction.s();

let v = self.reg(s) & i;

self.set_reg(t, v);

2.43 SB instruction

After the word and halfword store instructions we now meet 0xa1c42041 which
is a “store byte” (SB) instruction. We have to implement a third path for
accessing the memory like we did for store32 and store32:
impl Cpu {

/] ...

/// Store 16bit value into the memory

fn store8(&mut self, addr: u32, val: u8) {
self.inter.store8 (addr, val);

}

/// Store Byte
fn op-sb(&mut self, instruction: Instruction) {

if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”Ignoring_store_while_cache_is_isolated”);

return;
}
let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);
let v = self.reg(t);

self.store8(addr, v as u8);

47

2.44 Expansion 2

The address being written to is 0x1£802041 which falls in the expansion 2
memory map. As far as I can tell this expansion is only used for debugging on
development boards and doesn’t do anything useful on real hardware. Therefore
we’ll just ignore writes to this expansion:

impl Interconnect {

/// Store byte ‘val‘ into ‘addr
pub fn store8(&mut self, addr: u32, _: u8) {
let abs_addr = map:: mask_region (addr);
if let Some(offset) = map:: EXPANSION._2. contains (abs_addr) {
println!(” Unhandled_write_to_expansion.2_register_{:x}”
, offset);
return;
}
panic!(”unhandled_store8_into_address_{:08x}”, addr);
}

}

/// Expansion region 2
pub const EXPANSION_2: Range = Range(0x1f802000, 66);

2.45 JR instruction

A few steps later we encounter 0x03e00008 which is the “jump register” (JR)
instruction. It simply sets the PC to the value stored in one of the general

purpose registers:
|jr $31
Since JAL stores the return address in $31 we can return from a subroutine

by calling jr $ra which is exactly what the BIOS is doing here.

impl Cpu {
/]
/// Jump Register
fn op_jr(&mut self, instruction: Instruction) {

let s = instruction.s();

self .pc = self.reg(s);

2.46 LB instruction

The next unhandled instruction is 0x81efe288 which encodes “load byte” (LB).
As you can guess it’s like LW except that it only loads 8bits from the memor

|1b $15, —7544(815)

13Note the use of a negative offset, if we hadn’t implemented proper sign extension earlier
this instruction would misbehave.

48

Since the general purpose registers are always 32bit LB only loads the low
8bits of the register. The byte is treated like a signed value so it’s sign extended
to the full 32bits. Of course like LW there’s a load delay of one instruction. We
can implement it like thiﬁ
impl Cpu {

/!

/// Load 8bit value from the memory

fn load8(&self, addr: u32) —> u8 {
self.inter.load8 (addr)

}

/// Load Byte (signed)
fn op-lb(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

// Cast as i8 to force sign extension
let v = self.load8(addr) as i8;

// Put the load in the delay slot
self.load = (t, v as u32);

Next is the Interconnect implementation. The current instruction attempts
to load from an address within the BIOS so we’ll add support for it:

impl Interconnect {

/..

/// Load byte at ‘addr*
pub fn load8(&self , addr: u32) — u8 {
let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::BIOS.contains(abs_addr) {
return self.bios.load8 (offset);

}
panic!(”unhandled._load8_at._.address.{:08x}”, addr);
}
}
And the implementation of load8 in the BIOS:
impl Bios {
/// Fetch byte at ‘offset
pub fn load8(&self , offset: u32) — u8 {
self.data[offset as usize]
}
}

4 Note the cast from u8 to i8 and finally u32 to force the sign extension.

49

2.47 BEQ instruction
We then get a new branch instruction: 0x11e0000c¢ is “branch if equal” (BEQ):
| beq $15, $zero, +48
We can reuse the code of BNE by changing the condition:
impl Cpu {
/...

/// Branch if Equal
fn op_beq(&mut self , instruction: Instruction) {

let i = instruction.imm_se();
let s = instruction.s();

let t = instruction.t();

if self.reg(s) = self.reg(t) {

self.branch(i);
}

2.48 Expansion 1

After that the BIOS attemps to read a byte at 0x1£000084. This is where the
first expansion port is mapped. This expansion goes to the parallel port on the
back of the early Playstation models.

If you look at the byte read by the first LB instruction above you’ll see it’s
the first byte in a C-string: “Licensed by Sony Computer Entertainment Inc”.
Apparently in order to detect and validate the expansion the BIOS compares this
hardcoded string with the values stored starting at offset 0x84 in the expansion.

We don’t really have any reason to implement an expansion at that point
so we'll return the default value when no expansion is present. Looking at
mednafen’s source code it seems to be full-onedt

impl Interconnect {

/] ...

/// Load byte at ‘addr*
pub fn load8(&self, addr: u32) —> u8 {
let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::BIOS.contains(abs_addr) {
return self.bios.load8 (offset);
}

if let Some(-) = map:: EXPANSION._1. contains (abs_addr) {
// No expansion implemented
return O0xff;

}

panic!(”unhandled_load8_at_address.{:08x}”, addr);

15’m actually not sure how to test that easily since I need to have an expansion plugged in
the parallel connector to be able to run code on my console. Maybe I could start the code and
unplug it but that doesn’t sound too great... A better way would be to burn the test code on
a CD and run it on a modchipped console.

50

2.49 RAM byte access

Now the BIOS wants to store a byte to the RAM but we haven’t implemented
that yet, let’s fix that by implementing store8 and let’s add 1oad8 while we're
at it:

impl Interconnect {

/] ...

/// Store byte ‘val‘ into ‘addr®
pub fn store8(&mut self, addr: u32, val: u8) {
let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::RAM. contains (abs_addr) {
return self.ram.store8 (offset , val);
}

/] ...

/// Load byte at ‘addr*
pub fn load8(&self , addr: u32) —> u8 {
let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::RAM. contains (abs_addr) {
return self.ram.load8 (offset);
}

/).

And then in the RAM implementation:

impl Ram {

/// Store the byte ‘val‘ into ‘offset ¢

pub fn store8(&mut self , offset: u32, val: u8) {
self.data[offset as usize] = val;

}

/// Fetch the byte at ‘offset ¢

pub fn load8(&self, offset: u32) —> u8 {
self.data[offset as usize]

}

2.50 MPFCO instruction

We've already met MTCO, now we encounter the reciprocal instruction: 0x40026000
encodes “move from coprocessor 07 (MF CO)@

| mfcO0 $2, $cop0-12
There’s one important thing to note however: MFC instructions behave like

memory loads and have a delay slot before the value is finally stored in the target

register.
Fortunately we can simply re-use our load delay slots infrastructure:

6m using peudo-assembly again. The proper GNU assembler syntax would be
mfcO $2, $12

o1

impl Cpu {

/// Move From Coprocessor 0
fn op-mfcO(&mut self, instruction: Instruction) {

let cpu.r = instruction.t();
let cop-r = instruction.d().0;
let v = match cop_r {

12 = self.sr,
13 => // Cause register
panic!(”Unhandled._read _from _CAUSE_register”),
- =
panic!(” Unhandled _read -from_copOr{}”, cop-r),

s

self.load = (cpu-r, v)

2.51 AND instruction

An other easy instruction follows a few cycles later: 0x00412024 which is a
“bitwise and” (AND):

|and $4, $2, $1

We've already implemented OR so we can reuse the code, only changing the
operator:
impl Cpu {

/!

/// Bitwise And

fn op-and(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

let v = self.reg(s) & self.reg(t);

self.set_reg(d, v);

2.52 ADD instruction

We already implemented ADDIU, ADDI and ADDU. We finally encounter “add”
(ADD) in instruction 0x01094020:

|add $8, $8, $9

It adds the value of two registers (like ADDU) but generates an exception on
signed overflow (like ADDI):

impl Cpu {

/// Add and generate an exception on overflow
fn op-add(&mut self, instruction: Instruction) {

52

let s = instruction.s();
let t = instruction.t();
let d = instruction.d();
let s = self.reg(s) as i32;
let t = self.reg(t) as i32;

let v = match s.checked_add(t) {
Some(v) => v as u32,
None => panic!(”ADD_overflow”) ,

I

self.set_reg(d, v);

2.53 Interrupt Control registers

The BIOS then attempts to write 0 at address 0x1£801074. Looking at the
memory map this is the “Interrupt Mask” register.

This register is used to activate or ignore external [interrupt signals (things
like blanking interrupts from the GPU, timers, controller and memory card
interrupts etc. . .).

Interrupts are a signal coming from the peripherals to the CPU to notify it
that a certain event occurred (a timer reached its target value, a button was
pressed on the controller etc...). This way the CPU doesn’t have to waste time
polling the status of the various peripherals, it can just wait for the interrupt
notification.

Writing 0 to this register masks all interrupts so it seems that the BIOS
wants to make sure it won’t get interrupted before proceeding further.

There’s an other interrupt control register right before that one at 0x1£801070.
That one is called “Interrupt Status” and is used to query the status of the
various interrupts (active or not).

Since we don’t have any peripheral yet it wouldn’t make sense to implement
interrupts at that point, we’re going to ignore writes to these addresses for nowE

impl Interconnect {

/] ...

/// Store 32bit word ‘val‘ into ‘addr°
pub fn store32(&mut self , addr: u32, val: u32) {
if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println ! ("IRQ_control:_{:x}.<—_{:08x}”, offset, val);

return ;

}

panic!(”unhandled_.store32._into._address_{:08x}”, addr);

}

/// Interrupt Control registers (status and mask)
pub const IRQ.CONTROL: Range = Range(0x1f801070, 8);

7IRQ is a common abbreviation for “Interrupt Request”.

53

https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Polling_%28computer_science%29

2.54 BGTZ instruction

The next unhandled instruction is 0x1ca00003 which is a “branch if greater
than zero” (BGTZ):

| bgtz $5, +12

It’s similar to the BEQ and BNE we’ve already encountered but instead of
comparing two registers it compares a single general purpose register to 0.
The comparison is done using signed integers. For unsigned integers the test

would only ever be false if the register contained 0 and we can already test that
with BNE:

| bne $5, $zero, +12

So we have to be careful to cast to a signed integer before the comparison in
our implementation:

impl Cpu {

/// Branch if Greater Than Zero

fn op-bgtz(&mut self, instruction: Instruction) {
let i = instruction.imm-_se();
let s = instruction.s();

let v = self.reg(s) as i32;

if v>0¢{
self .branch(i);
}

2.55 BLEZ instruction
A few step later we encounter the complementary instruction 0x18a00005 which
encodes “branch if less than or equal to zero” (BLEZ):

| blez $5, +20

It’s the same thing as BGTZ with the opposite predicate:

impl Cpu {

/// Branch if Less than or Equal to Zero

fn op-blez(&mut self, instruction: Instruction) {
let i = instruction.imm_se();
let s = instruction.s();

let v = self.reg(s) as i32;

if v<=0 {
self.branch(i);
}

54

2.56 LBU instruction
After that we meet instruction 0x90ae0000 which is a “load byte unsigned”
(LBU):
|1bu $14, 0($5)

It’s exactly like LB but without sign extension, the high 24 bits of the target
register are set to 0:
impl Cpu {

/...

/// Load Byte Unsigned
fn op-lbu(&mut self, instruction: Instruction) {

let i = instruction.imm-_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping-add(i);
let v = self.load8(addr);

// Put the load in the delay slot
self.load = (t, v as u32);

2.57 JALR instruction
Then we encounter instruction 0x0100£809 which encodes a “jump and link
register” (JALR):
| jalr $31, $8
It’s implemented like JR except that it also stores the return address in a

general purpose register. Unlike JAL, JALR can store the return address in any
general purpose register, not just $ra:
impl Cpu {

/] ...

/// Jump And Link Register

fn op_jalr(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();

let ra = self.pc;

// Store return address in ‘df
self.set_reg(d, ra);

self .pc = self.reg(s);

2.58 BLTZ, BLTZAL, BGEZ and BGEZAL instructions

The next unhandled instruction, 0x04800003, is a bit of a weird one: the six
MSBs are 0b000001 which can encode four different instructions:

55

e “branch if less than zero” (BLTZ):
| bltz $4, +12

e “branch if less than zero and link” (BLTZAL):
‘ bltzal $4, +12

e “branch if greater than or equal to zero” (BGEZ):
| bgez $4, +12

e “branch if greater than or equal to zero and link” (BGEZAL):
‘ bgezal $4, +12

In order to figure out what to do exactly we need to look at bits 16 and 20
in the instruction:

e If bit 16 is set then the instruction is BGEZ, otherwise it’s BLTZ.
o If bits [20:17] are equal to 0x80 then the return address is linked in $ra.

Note that when linking is requested the return address is linked in $ra even
if the branch is not taken.

Here’s how it can be implemented:
impl Cpu {

/!

/// Various branch instructions: BGEZ, BLTZ, BGEZAL, BLTZAL.
/// Bits 16 and 20 are used to figure out which one to use.
fn op_bxx(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let s = instruction.s();
let instruction = instruction.O;

let is_bgez = (instruction >> 16) & 1;
let is_link = (instruction >> 17) & 0Oxf = 8;
let v = self.reg(s) as i32;

// Test ”less than zero”
let test = (v < 0) as u32;

// If the test is ”greater than or equal to zero” we need
// to mnegate the comparison above since

// ("a >= 07 <=> ”"!(a < 0)”). The xor takes care of that.
let test = test ~ is_bgez;

if is_link {
let ra = self.pc;

// Store return address in R31
self.set_reg (RegisterIndex (31), ra);

}

if test != 0 {
self . branch(i);

}

56

Instead of testing bit 16 directly I save a branch by xoring the value of test
(which is a boolean 0 or 1) with it.

2.59 SLTI instruction

We then encounter 0x28810010 which encodes instruction “set if less than
immediate” (SLTT):

| slti 81, $4, 16

It works like SLTU except that it compares a register with an immediate
value (sign-extended) and the comparison is done using signed arithmetics:

impl Cpu {
/-
/// Set if Less Than Immediate (signed)
fn op-slti(&mut self, instruction: Instruction) {
let i = instruction.imm_se() as i32;
let s = instruction.s();
let t = instruction.t();

let v = (self.reg(s) as i32) < i;

self.set_reg(t, v as u32);

2.60 SUBU instruction

The next unhandled instruction is 0x01c47023 which encodes “substract un-
signed” (SUBU):
| subu $14, $14, $4
The implementation is straightforward:
impl Cpu {
/] ...

/// Substract Unsigned
fn op_subu(&mut self, instruction: Instruction) {

let s = instruction.s();
let t = instruction.t();
let d = instruction.d();
let v = self.reg(s).wrapping_sub(self.reg(t));

self.set_reg(d, v);

2.61 SRA instruction

Next we meet instruction 0x00042603 which is “shift right arithmetic” (SRA):
‘sra $4, $4, 24

57

There are two versions of the shift right instruction: arithmetic and logical.
The arithmetic version considers that the value is signed and use the sign bit to
fill the missing MSBs in the register after the shift.

In Rust, C and C++ we can achieve the same behavior by casting the register
value to a signed integer before doing the shift:
impl Cpu {

/!

/// Shift Right Arithmetic

fn op.sra(&mut self, instruction: Instruction) {
let i = instruction.shift ();
let t = instruction.t();
let d = instruction.d();

let v

(self.reg(t) as i32) >> i;

self.set_reg(d, v as u32);

2.62 DIV instruction

The next unhandled instruction is 0x0061001a which is “divide” (DIV):
div $3, $1

Multiplications and divisions are a bit peculiar on the MIPS architecture: for
one, the result is not stored in general purpose registers but in two dedicated
32bit registers: HI and LO.

For a division LO will contain the quotient and HI the remainder of the
euclidean division.

The reason for this is that divisions and multiplications are typically much
slower than the other instructions we’ve implemented so far (with the exception
of loads and stores potentially, due to the memory latency). While a simple
ADD or SRA can be executed in a single CPU cycle, DIV can take as much as
36 cycles to get the result.

In order to try and hide this delay when the CPU executes a division
instruction it does not stall the pipeline waiting for the instruction to finish.
Rather it continues executing the following instructions and when the code
decides to fetch the result of the division (using dedicated instructions to load HI
or LO) the CPU only stalls if it didn’t have the time to finish doing the division
in the background. This way if you craft your assembly cleverly you can hide
the division delay by doing some other work while the division is finishing.

For now we haven’t bothered implementing accurate timings at all so we
won’t worry about these details and consider the division takes one cycle to
execute. Later on when we implement proper timings we’ll have to revisit that
code.

An important thing to consider is what happens when we encounter a division
by zero. Perhaps surprisingly the CPU does not generate an exception, it just
gives bogus values (1 or -1 depending on the sign of the dividend).

An other bogus behaviour would be to divide 0x80000000 (-2147483648) by
Oxffffffff (-1) which would yield 2147483648 which does not fit in a 32bit
signed integer. Table [7] gives a summary of those special cases.

58

Numerator | Denominator | Quotient (LO) | Remainder (HI)

>0 0 -1 (Oxffffffff) | numerator
<0 0 +1 numerator
0x80000000 | Oxffffffff 0x80000000 0

Table 7: Special cases in divisions

We should now have all we need to implement the instruction, let’s start by
adding the HI and LO registers to our Cpu:

/// CPU state
pub struct Cpu {

/] ...

/// HI register for division remainder and multiplication high
/// result

hi: u32,

/// LO register for division quotient and multiplication low

/// result

lo: u32,
}
impl Cpu {
pub fn new(inter: Interconnect) —> Cpu {
/-
Cpu {
/..
hi: Oxdeadbeef,
lo: Oxdeadbeef,
}
}
/-
}
And now the implementation of the DIV opcode itself:

impl Cpu {

/!

/// Divide (signed)
fn op._div(&mut self, instruction: Instruction) {

let s = instruction.s();
let t = instruction.t();
let = self.reg(s) as i32;

n
let d = self.reg(t) as i32;

if d =10 {
// Division by zero, results are bogus
self.hi = n as u32;

if n>=0 {
self.lo = Oxffffffff;
} else {

self.lo = 1;

} else if n as u32 = 0x80000000 && d =— —1 {
// Result is not representable in a 32bit

59

// signed integer

self.hi = 0;
self.lo = 0x80000000;
} else {
self .hi = (n % d) as u32;
self .lo = (n / d) as u32;

2.63 MPFLO instruction

We've seen that divisions store their results in the HI and LO registers but
we don’t know how we access those yet. Unsurprisingly the next unhandled
instruction does just that: 0x00001812 encodes “move from LO” (MFLO):

| mflo $3

This instruction simply moves the contents of LO in a general purpose
register. This instruction would also stall if the division was not yet done but
we’ll implement that later:
impl Cpu {

/] ...
/// Move From LO

fn op-mflo(&mut self, instruction: Instruction) {
let d = instruction.d();

let lo = self.lo;

self.set_reg(d, lo);

2.64 SRL instruction
We've implemented SRA not long ago, now we encounter the sister instruction
0x00057082 which is a “shift right logical” (SRL):
| srl 814, $5, 2
It’s very similiar to SRA except that the instruction treats the value as

unsigned and fills the missing MSBs with 0 after the shift. In Rust, C and C++
we can achieve this behavior by shifting unsigned values:

impl Cpu {
/...

/// Shift Right Logical
fn op-srl(&mut self, instruction: Instruction) {

let i = instruction.shift ();
let t = instruction.t();
let d = instruction.d();

let v = self.reg(t) >> i;

self.set_reg(d, v);

60

2.65 SLTIU instruction

After that we meet 0x2c410045 which is “set if less than immediate unsigned”
(SLTT):
‘ sltiu $1, $2, 0x45
It’s implemented like SLTT but using unsigned integerﬂ
impl Cpu {
/-

/// Set if Less Than Immediate Unsigned
fn op-sltiu(&mut self, instruction: Instruction) {

let i = instruction.imm-_se();
let s = instruction.s();
let t = instruction.t();

let v = self.reg(s) < i;

self.set_reg(t, v as u32);

2.66 DIVU instruction

Now we encounter the other division instruction: 0x0064001b which encodes
“divide unsigned” (DIVU):

| divu $3, $4

Since this version uses unsigned operands we only have one special case: the
division by zero (the first line in table [7]). Thus the implementation is slightly
shorter than DIV:

impl Cpu {

/// Divide Unsigned

fn op-divu(&mut self, instruction: Instruction) {
let s = instruction.s();
let t = instruction.t();

let

n = self.reg(s);
let d

self.reg(t);

if d =10 {
// Division by zero, results are bogus
self.hi = n;
self.lo = Oxffffffff;
} else {
self.hi = n % d;
self.lo = n / d;

18Note that the immediate is still sign extended even though it’s then used as an unsigned
value.

61

2.67 MFHI instruction

We already implemented MFLO, now we meet instruction 0x0000¢810 which
encodes “move from HI” (MFHI):

| mfhi $25

Like MFLO it should be able to stall if the operation has not yet finished
but we’ll implement that later:

impl Cpu {
/]

/// Move From HI

fn op.-mflo(&mut self, instruction: Instruction) {
let d = instruction.d();
let hi = self.hi;

self.set_reg(d, hi);

2.68 SLT instruction

The next unhandled instruction is 0x0338082a which is “set on less than”:
| slt $1, $25, $24
It’s like SLTU but with signed operands:
impl Cpu {
/..

/// Set on Less Than (signed)
fn op-slt(&mut self, instruction: Instruction) {
let d = instruction.d();

let s = instruction.s();
let t = instruction.t();
let s = self.reg(s) as i32;
let t = self.reg(t) as i32;

let v =5 < t;

self.set_reg(d, v as u32);

2.69 Interrupt Control read

The BIOS then attempts to read from the Interrupt Mask register. Earlier we
just ignored writes to this register (and the Interrupt Status register) so for now
we’ll return 0. We'll rewrite this code when we decide to implement interrupts:

impl Interconnect {

/..

/// Load 32bit word at ‘addr*
pub fn load32(&self, addr: u32) —> u32 {

/]

62

if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println!(7IRQ_control_read_{:x}”, offset);
return 0;

}

panic!(”unhandled._load32_at_address.{:08x}”, addr);

}

2.70 Timer registers

After that the BIOS wants to write 0 to 0x1£801104. This address is one of the
timer registers. Timers are basically just configurable counters that can generate
interrupts at a predetermined rate. There are three independent timers on the
Playstation.

For now we won’t have to actually implement them though because the
BIOS just initializes them to a default disabled state by writing 0 to all the
configuration registers. We can just ignore those writes and move along;:

impl Interconnect {

/// Store 16bit halfword ‘val‘ into ‘addr®
pub fn storel6(&mut self , addr: u32, _: ul6) {
/.
if let Some(offset) = map::TIMERS. contains (abs_addr) {
println!(” Unhandled_write_to_timer_register_{:x}”,
offset);
return;
}
panic!(”unhandled_storel6._into_address_{:08x}”, addr);
}

2.71 Exceptions

The next unhandled instruction is 0x0000000c which encodes a “system call”
(SYSCALL):

‘ syscall 0

This instruction is used to explicitly trigger an exception. Exceptions occur
when peripherals trigger an (unmasked) interrupt, when certain error occurs
(unaligned memory access, checked overflow in certain instructions, etc...) or
with commands which are meant to trigger an exception like SYSCALL or
BREAK.

When an exception occurs the following takes place in the CPU:

e The current value of the PC is stored in $cop0.14, the EPC (Exception
PC) registerﬂ

19This is not entirely accurate when the exception occurs in a branch delay slot. We'll review
that case in a minute

63

e Record the cause of the exception (syscall, overflow, interrupt...) in
$cop0_13, the CAUSE register,

e Disable interrupts in $cop0-12 (SR),

e Jump into the exception handler whose address is either 0x80000080 or
0xbfc00180 depending on the value of the BEV field (bit 22) in $cop0_12
(SR).

Unlike regular jumps and branches exceptions don’t have a branch delay slot:
the CPU jumps to the exception handler right after the current instruction.
The problem is that with my current architecture we fetch an instruction
ahead of time to emulate the branch delay slot. When an exception is triggered
we’d have to replace that instruction by the first one in the exception handler.
It’s possible of course but it’s a bit messy and I think it was a bad idea after all.
Instead I’'m going to use two variables for the PC: one will hold he current
instruction and one will hold the “next PC”. Normally next_pc is always 4 bytes
ahead but when a branch occurs we’ll set the PC to the instruction in the delay
slot and next_pc to the branch target. In case of an exception however we’ll set
the PC to the exception handler address directly.
Let’s change our CPU state to reflect that change:
/// CPU state
pub struct Cpu {
/// The program counter register: points to the
/// mnext instruction
pc: u32,
/// Next value for the PC, used to simulate the
/// branch delay slot
next_pc: u32,

}
impl Cpu {
pub fn new(inter: Interconnect) —> Cpu {
/.
// Reset value for the PC, beginning of BIOS memory
let pc = 0xbfc00000;
Cpu {
pc: pc,
next_pc: pc.wrapping._add(4),
/]
}
}
}
We can then (once again) rework run next_instruction to use our PC pair:

impl Cpu {

pub fn run_next_instruction(&mut self) {
let pc = self.pc;

64

// Fetch instruction at PC
let instruction = Instruction(self.load32(pc));

// Increment next PC to point to the next instruction.
self .pc = self.next_pc;
self.next_pc = self.next_pc.wrapping_add(4);

// Execute the pending load (if any, otherwise it will load
// ‘RO¢ which is a NOP). ‘set.reg‘ works only on ‘out_regs‘
// so this operation won’t be visible by the next

// instruction .

let (reg, val) = self.load;

self.set_reg(reg, val);

// We reset the load to target register 0 for the next
// instruction

self.load = (RegisterIndex (0), 0);
self.decode_and_execute (instruction);
// Copy the output registers as input for the next

instruction
self .regs = self.out_regs;

Then we just need to modify our branch and jump functions to set next_pc
instead of pc to set the target address.

After that we can implement our exception infrastructure. On top of pc and
next_pc we’ll also need to store the address of the current instruction to store
it in the EPC register ($cop0.14). We also need to add the CAUSE register to

store the
/// CPU

exception code:

state

pub struct Cpu {

//
/17
/17

Address of the instruction currently being executed. Used
for
setting the EPC in exceptions.

current_pc: u32,

/// Cop0 register 13: Cause Register
cause: u32,

/// Cop0 register 14: EPC

epc: u32,
}
impl Cpu {
/.
pub fn run_next_instruction(&mut self) {
// Fetch instruction at PC
let instruction = Instruction(self.load32(self.pc));
// Save the address of the current instruction to save in
// ‘EPC‘ in case of an exception.
self.current_pc = self.pc;
/-
}
}

65

Now that we’ve added the EPC and CAUSE registers for cop0 we can also
add them to our implementation of MFCO:
impl Cpu {
/-

/// Move From Coprocessor 0
fn op-mfcO(&mut self, instruction: Instruction) {

let cpu.r = instruction.t();
let cop-r = instruction.d().0;
let v = match cop-r {

12 = self.sr,
13 => self.cause,
14 => self.epc,
- =
panic!(” Unhandled._read _from_copOr{}”, cop-r),

s

self.load = (cpu-r, v)

2.72 SYSCALL instruction

Finally we can implement our exception infrastructure and our SYSCALL opcode.
I'm going to use a exception method that will be used from various exception
sources:

impl Cpu {

//

/// Trigger an exception
fn exception(&mut self , cause: Exception) {
// Exception handler address depends on the ‘BEV‘ bit:
let handler = match self.sr & (1 << 22) != 0 {
true => 0xbfc00180,
false => 0x80000080,

// Shift bits [5:0] of ‘SR‘ two places to the left.
// Those bits are three pairs of Interrupt Enable/User
// Mode bits behaving like a stack 3 entries deep.
// Entering an exception pushes a pair of zeroes
// by left shifting the stack which disables

// interrupts and puts the CPU in kernel mode.

// The original third entry is discarded (it’s up
// to the kernel to handle more than two recursive
// exception levels).

let mode = self.sr & 0x3f;

self.sr &= "0x3f;

self.sr |= (mode << 2) & 0x3f;

// Update ‘CAUSE‘ register with the exception code (bits
/] 16:2])

self.cause = (cause as u32) << 2;

// Save current instruction address in ‘EPC‘
self .epc = self.current_pc;

// Exceptions don’t have a branch delay, we jump directly

66

// into the handler
self.pc = handler;
self .next_pc = self.pc.wrapping_-add (4);

}

/// System Call

fn op-syscall(&mut self, _: Instruction) {
self.exception (Exception:: SysCall);

}

}

/// Exception types (as stored in the ‘CAUSE‘ register)
enum Exception {
/// System call (caused by the SYSCALL opcode)
SysCall = 0x8,

Our op_syscall method ends up being a one liner. All the logic is in the
generic exception method.

With this SYSCALL instruction the BIOS enters the exception handler. The
NoCash specs tell us that we have to look at the contents of register $4 to know
what the BIOS is supposed to do. In this case $4 contains 1 so it’s supposed
to run “EnterCriticalSection”. This function is apparently supposed to disable
all interrupts. Once this is done if everything works well the exception handler
should return to the caller using an RFE instruction, let’s continue and see if we
find it as expected.

2.73 MTLO instruction

In the exception handler we stumble upon 0x00400013 which is “move to LO”
(MTLO):
‘mtlo $2

As its name implies it just moves the value from a general purpose register
into the LO register. Be careful though because the instruction encoding is
different from MFLO:
impl Cpu {

/] ...

/// Move to LO
fn op-mtlo(&mut self , instruction: Instruction) {
let s = instruction.s();

self.lo = self.reg(s);

It might seem surprising to encounter this instruction: why would the BIOS
want to move something into the LO register? After all this register is for the
result of divisions and multiplications, you can’t do anything with it besides
reading it back.

The answer is that exception handlers are not supposed to restore all register
values before returning to the “normal” code flow. The reason is obvious:
exceptions can be triggered by asynchronous interrupts so they can basically
happen at any time. If the exception handler changes the value of any register

67

before giving back the control to the interrupted code it could lead to bogus
behaviour.

For instance some game code could start a division and be interrupted before
it reads the result in LO. Then the interrupt handler needs to compute an other
division but does not restore the original value of the register before returning
the control to the game. At that point the game reads LO expecting to get the
result of its computation but instead it gets some garbage value left there by
the handler. Obviously that would be problematic.

To avoid this the prologue of the exception handler saves the value of the
registers it might modify (including HI and LO) to the RAM and then loads
them back in the epilogue.

There are two exceptions though: registers $26 and $27¢ are reserved for the
BIOS and are not preserved by the exception handler. In other words no code
should use those registers when exceptions can occur because their content could
change at any moment.

2.74 MTHI instruction

Unsurprisingly the MTLO is almost immediately followed by instruction 0x00400011
which is “move to HI” (MTHI):

| mtlo $2
The implementation is almost identical to MTLO:

impl Cpu {
/// Move to HI
fn op.-mthi(&mut self, instruction: Instruction) {

let s = instruction.s();

self.hi = self.reg(s);

2.75 RFE intsruction

As expected once the exception handler is done it executes instruction 0x42000010
which is a coprocessor 0 opcode for “return from exception” (RFE):

‘ rfe

All this instruction does is shift the Interrupt Enable/User Mode bits two
places back to the right. This effectively undoes the opposite shift done when
entering the handler and therefore puts the CPU back in the mode it was when
the exception triggered (unless SR itself has been modified in the handler).

It does not reset the PC however, it’s up to the BIOS to fetch the address in
EPC, increment it by 4 to point at the next instruction and jump to it. The
RFE instruction is typically in the final jump delay slot (and that’s exactly what
the Playstation BIOS handler does in this case).

The instruction encoding for RFE is a bit annoying: as usual we begin by
checking bits [31:26] which are 0b010000 and introduce a coprocessor opcode.
Then we check bits [25:21] to figure which one it is. For RFE it’s 0b10000.

68

But it’s not over! There can be multiple instructionts with this coprocessor
encoding, although RFE is the only one implemented on the Playstation hardware
(the others have to do with virtual memory). To make sure the requested
instruction is the one we expect we must check bits [5:0] which must be equal to
0b010000:

impl Cpu {

/// Coprocessor 0 opcode
fn op_cop0(&mut self, instruction: Instruction) {
match instruction.cop_opcode() {
0b00000 => self.op-mfcO(instruction),
0b00100 => self.op_-mtcO(instruction),
0b10000 => self.op_rfe(instruction),
- => panic!(”unhandled_copO_instruction.{}”,
instruction)

}

/// Return From Exception
fn op_-rfe(&mut self, instruction: Instruction) {
// There are other instructions with the same encoding but
all
// are virtual memory related and the Playstation doesn’t
// implement them. Still, let’s make sure we’re not running
// buggy code.
if instruction.0 & 0x3f != 0b010000 {
panic!(”Invalid _copO_instruction:._{}
}

// Restore the pre—exception mode by shifting the Interrupt
// Enable/User Mode stack back to its original position.
let mode = self.sr & 0x3f;

self.sr &= !0x3f;

self.sr |= mode >> 2;

”»

, instruction);

2.76 Exceptions and branch delay slots

In our current implementation when an exception occurs we store the current
instruction’s address in ‘EPC‘. That’s correct in most cases but there’s one
exception in the MIPS archicture: when an exception occurs in a branch delay
slot we must store the address of the branch instruction in EPCEI

Consider the following sequence where we have a ‘SYSCALL* instruction in
a ‘JR‘ delay slot:

jr $ra
syscall

In this case the CPU will put the address of the jr $ra instruction in EPC
before entering the exception handler. In order to signal this condition to the
handler the CPU also sets bit 31 of the CAUSE register.

In order to implement this behaviour we first need to keep track of whether
or we're in a branch delay slot. It’s tempting to just check whether or not the
next instruction is 4 bytes ahead of the current one but it’s technically possible

20This is only for branch delay slots, load delay slots behave normally exception-wise.

69

to branch 4 bytes ahead, even though it wouldn’t be very useful. Instead I'm
going to play it safe and add new variables:

pub struct Cpu {

/// Set by the current instruction if a branch occured and the
/// mext instruction will be in the delay slot.

branch: bool,

/// Set if the current instruction executes in the delay slot
delay_slot: bool,

}
impl Cpu {
pub fn new(inter: Interconnect) —> Cpu {
/.
Cpu {
/).
branch : false ,
delay_slot: false ,
}
}
pub fn run_next_instruction(&mut self) {
/]
let instruction = Instruction(self.load32(self.pc));
// 1f the last instruction was a branch then we’re in the
// delay slot
self.delay_slot = self.branch;
self .branch = false;
self.decode_and_execute(instruction);
/.
}
}

Now we can simply modify (once again) all the branch and jump instructions
to set self.branch = true. In the next cycle run_next_instruction will copy
this variable to self.delay_slot.

Now that we keep track of delay slots we can modify our exception code to
handle them accurately:
impl Cpu {

//

/// Trigger an exception
fn exception(&mut self , cause: Exception) {

/]

// Update ‘CAUSE‘ register with the exception code (bits
/] 16:2])

self.cause = (cause as u32) << 2;

// Save current instruction address in ‘EPC‘
self.epc = self.current_pc;

70

if self.delay_slot {
// When an exception occurs in a delay slot ‘EPC‘

points
// to the branch instruction and bit 31 of ‘CAUSE‘ is
set .
self.epc = self.epc.wrapping_sub(4);
self.cause |= 1 << 31;
}

With our exception handling infrastructure in place we can take the oppor-
tunity to review some exception conditions we’ve ignored so far and implement
them accurately.

2.77 ADD and ADDI overflows

The ADD and ADDI opcodes generate an exception on signed overflow but in
our current implementation is incomplete. We can use our exception method
to handle them in full:
impl Cpu {

/) ...

/// Add and check for signed overflow

fn op-add(&mut self, instruction: Instruction) {
let s = instruction.s();
let t = instruction.t();
let d = instruction.d();

let s = self.reg(s) as i32;
let t self .reg(t) as i32;

match s.checked_add (t) {
Some(v) => self.set_reg(d, v as u32),
None => self.exception (Exception:: Overflow),

}

/// Add Immediate and check for signed overflow
fn op-addi(&mut self, instruction: Instruction) {

let i = instruction.imm_se() as i32;
let t = instruction.t();
let s = instruction.s();

let s = self.reg(s) as i32;

match s.checked_add (i) {
Some(v) => self.set_reg(t, v as u32),
None => self.exception (Exception:: Overflow),

}

EXCCI)tiOIl tprS as stored in the ‘CAUSE‘ register
enum Exception {

/]

/// Arithmetic overflow

71

Overflow = Oxc,

}

2.78 Store and load alignment exceptions

When a load or store instruction targets a misaligned address (i.e. a word access
address is not a multiple of 4 or a halfword access address is not a multiple of 2)
the CPU is supposed to generate an exception:
impl Cpu {

/] ...

/// Load Word
fn op_lw(&mut self, instruction: Instruction) {

/] ...

// Address must be 32bit aligned
if addr % 4 = 0 {
let v = self.load32(addr);

// Put the load in the delay slot
self.load = (t, v);
} else {

self.exception(Exception:: LoadAddressError);
}

}

/// Store Halfword
fn op-sh(&mut self, instruction: Instruction) {

/]

// Address must be 16bit aligned
if addr % 2 = 0 {
self.storel6 (addr, v as ul6);

} else {

self.exception (Exception:: StoreAddressError);
}

}

/// Store Word
fn op-sw(&mut self, instruction: Instruction) {

/...

// Address must be 32bit aligned
if addr % 4 = 0 {

self.store32 (addr, v);
} else {

self.exception (Exception:: StoreAddressError);
}

}

/// Exception types (as stored in the ‘CAUSE‘ register)
enum Exception {

/] ...

/// Address error on load
LoadAddressError = 0x4,
/// Address error on store
StoreAddressError = 0x5,

72

2.79 PC alignment exception

We should also generate an exception if the PC address is not correctly aligned
when we attempt to fetch an instruction. This can happen if a JR or JALR
instruction jumped to an address that was not 32bit alignecﬂ

impl Cpu {

pub fn run_next_instruction(&mut self) {
// Save the address of the current instruction to save in
// ‘EPC‘ in case of an exception.
self.current_pc = self.pc;

if self.current_pc % 4 !'= 0 {
// PC is not correctly aligned!
self.exception (Exception:: LoadAddressError);
return ;

}

// Fetch instruction at PC
let instruction = Instruction(self.load32(self.pc));

/]

2.80 RAM 16bit store

If the exceptions are implemented correctly our next unhandled condition should
be a SH targeting address 0x800dee24. This address is in the RAM so we just
need to add 16bit store support for it:

impl Interconnect {

/] ...

/// Store 16bit halfword ‘val‘ into ‘addr®
pub fn storel6(&mut self , addr: u32, val: ul6) {

let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::RAM. contains (abs_addr) {
return self.ram.storel6 (offset , val);

}
/]
}
}
And then in our RAM implementation:
impl Ram {

/..

/// Store the 16bit little endian halfword ‘val‘ into ‘offset
pub fn storel6(&mut self, offset: u32, val: ul6) {
let offset = offset as usize;

21Tt might be more efficient to add the test in the branch and jump instructions capable of
setting an invalid PC but I don’t really care about performance at that point and that would
make the code more complicated

73

let b0 = val as u8;

let bl = (val >> 8) as u8;
self.data[offset + 0] = b0;
self.data[offset + 1] = bl;

As always, make sure you get the endianess right.

2.81 DMA registers

We then stumble upon an unhandled load from address 0x1£8010£0. Looking
at the memory map this is the “DMA control register”. DMA stands for Direct
Memory Access. This is a generic term which can mean different things on
different architectures but the concept is always the same: it’s used to move
data between a peripheral and RAM without directly involving the CPU.

For instance if a game wants to load a texture to the GPU memory it can
set up the DMA to do the copy instead of doing it from the CPU with a series
of LW/SW. This is generally faster since the DMA is usually more efficient for
moving data around and while it’s working the CPU can do more interesting
thing@

Since we still have some work to do on the CPU let’s see if we can ignore the
DMA access for now:

impl Interconnect {

/] ..

/// Load 32bit word at ‘addr‘
pub fn load32(&self , addr: u32) — u32 {
/.

if let Some(-) = map::DMA. contains (abs_addr) {
println!("DMA_read:_{:08x}”, abs_addr);
return 0;

}

panic!(”unhandled_load32_at_address_{:08x}”, addr);

}

/// Direct Memory Access registers
pub const DMA: Range = Range(0x1f801080, 0x80);
You'll notice that I ignore all loads from any DMA register, not just the
control. Let’s hope we’ll be able to keep the smoke screen up for a little longer.
Soon after that we encounter a SW targeting the DMA control register with
the value 0x000b0000. This value configures the DMA SPU channel priority
and enables it. This probably means the BIOS is getting ready to play some
sound. Since we don’t care about the SPU or the DMA at that point let’s ignore
those writes as well:

impl Interconnect {

/..

22 Although on the Playstation the CPU is seriously gimped while the DMA is running as
we’ll see later

74

https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Direct_memory_access

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
/]

if let Some(-) = map::DMA. contains (abs_addr) {
println ! ("DMA_write:_{:08x}.{:08x}”, abs_addr, val);

return;
}
panic!(”unhandled._store32._into_address_{:08x}:_.{:08x}"”,
addr, val);

Hopefuly we should be able to ignore the DMA for a while and keep focusing
on the CPU.

2.82 LHU instruction

The next unhandled instruction is 0x961901ae which is “load halfword unsigned”
(LHU):
| lhu $25, 430($16)
It’s the 16bit counterpart to LBU and it’s our first 16bit load istruction:
impl Cpu {
/-

/// Load 16bit value from the memory

fn loadl6(&self, addr: u32) —> ul6 {
self.inter.load16 (addr)

}

/// Load Halfword Unsigned
fn op-lhu(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

// Address must be 16bit aligned
if addr % 2 = 0 {
let v = self.load16 (addr);

// Put the load in the delay slot
self.load = (t, v as u32);

} else {

self.exception(Exception:: LoadAddressError);
}

We need to implement 1load16 in the interconnect. The current instruction
attempts to load from 0x1f801dae which is the SPU status register. Let’s lie
once again and return 0 for SPU reads:

impl Interconnect {

/] ...

(0]

/// Load 16bit halfword at ‘addr°
pub fn loadl16(&self , addr: u32) —> ul6 {
let abs_addr = map:: mask_region (addr);

if let Some(-) = map::SPU.contains(abs_addr) {
println!(” Unhandled_read _from _SPU_register_{:08x}”,
abs_addr);
return 0;

}

panic!(”unhandled_.loadl6_at_address_{:08x}”, addr);

If we continue the emulation we stumble on an other unhandled load16, this
time at address 0x800dee24. This one is easy, it’s RAM:

impl Interconnect {

/] ...

/// Load 16bit halfword at ‘addr°
pub fn loadl6(&self, addr: u32) —> ul6 {
/.

if let Some(offset) = map::RAM. contains (abs_addr) {
return self.ram.load16(offset);

}
panic!(”unhandled_load16_at_address_{:08x}”, addr);
}
}
And in our RAM implementation:
impl Ram {
/// Fetch the 16bit little endian halfword at ‘offset ¢
pub fn load16(&self, offset: u32) —> ul6 {
let offset = offset as usize;
let b0 = self.data[offset + 0] as ul6;
let bl = self.data[offset + 1] as ul6;
b0 | (bl << 8)
}
}

2.83 SLLV instruction

After that we encounter 0x0078c804 which is “shift left logical variable” (SLLV):
| sllv $25, $24, $3

It’s like SLL except the shift amount is stored in a register instead of an
immediate value.

The implementation is quite simple but there’s something to consider: so far
the shift amount was always a 5bit immediate value but this time it’s a 32bit
register. What happens when the register value is greater than 317

76

It’s also important to figure out because shifting out of range is undefined
in Rust (and in C) so we have to be careful not to introduce weird undefined
behavior in our emulator.

Shifting by more than 31 places would mean shifting the 32bit value completely
out of range. Intuitively you might say that it sets it to 0 (all significant bits get
shifted outside the register) but it turns out it’s not accurate.

In reality on the R3000 CPU the shift amount is always implicitly masked
with 0x1f to only keep the low 5 bits. It means that a shift amount of 32 behaves
like 0 (i.e. it’s a NOP) while 130 behaves like 2:

impl Cpu {
/]

/// Shift Left Logical Variable
fn op-sllv(&mut self, instruction: Instruction) {

let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

// Shift amount is truncated to 5 bits
let v = self.reg(t) << (self.reg(s) & 0x1f);

self.set_reg(d, v);

2.84 LH instruction
We implemented LHU not long ago and now we meet 0x87a30018 which is “load
halfword” (LH):
|1h $3, 24($29)

It’s implemented like LHU but it sign-extends the 16bit value to fit the 32bit
target register:
impl Cpu {

/] ...

/// Load Halfword (signed)
fn op-lh(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

// Cast as 116 to force sign extension
let v = self.loadl6(addr) as il6;

// Put the load in the delay slot
self.load = (t, v as u32);

2.85 NOR instruction
After that we stumble upon 0x0040c827 which is “bitwise not or” (NOR):

7

| nor $25, $2, $zero

It simply computes a bitwise OR between two registers and then complements
the result before storing it in the destination registef®}
impl Cpu {
/] ...

/// Bitwise Not Or
fn op-nor(&mut self, instruction: Instruction) {
let d = instruction.d();

let s = instruction.s();
let t = instruction.t();
let v = !(self.reg(s) | self.reg(t));

self.set_reg(d, v);

2.86 SRAYV instruction

The next unhandled instruction is 0x00e84007 which encodes “shift right arith-
metic variable” (SRAV):

‘srav $8, $8, $7

We've already implemented SRA and SLLV so this one shouldn’t give us any
trouble:

impl Cpu {

/// Shift Right Arithmetic Variable

fn op-srav(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

// Shift amount is truncated to 5 bits
let v = (self.reg(t) as i32) >> (self.reg(s) & 0x1f);

self.set_reg(d, v as u32);

2.87 SRLV instruction

We finally encounter the last shift instruction: 0x01a52806 is “shift right logical
variable” (SRLV):

‘srlv $5, $5, $13

It’s implemented like SRAV without sign extension (or like SRL with a
register holding the shift amount, if you prefer):

23Note that in this context ! in rust does the same thing as ~ in C: it’s the bitwise NOT
operator.

78

impl Cpu {

//

/// Shift Right Logical Variable

fn op_srlv(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

// Shift amount is truncated to 5 bits
let v = self.reg(t) >> (self.reg(s) & 0x1f);

self.set_reg(d, v);

2.88 MULTU instruction

The next unhandled instruction is 0x01240019 which encodes “multiply unsigned”
(MULTU):
‘ multu $9, $4

It’s our first multiplication opcode. The CPU does the multiplication using
64bit arithmetics and store the result across the HI and LO registers:
impl Cpu {
/] ...

/// Multiply Unsigned
fn op-multu(&mut self , instruction: Instruction) {

let s = instruction.s();
let t = instruction.t();
let a = self.reg(s) as u64;
let b = self.reg(t) as u64;
let v = a *x b;

self.hi = (v >> 32) as u32;
self.lo = v as u32;

The timings of the multiplication instructions are similar to the divisions:
they run in the background and only stall the CPU if it attempts to read the
LO or HI registers before it’s done. Since we don’t implement accurate CPU
timings I choose to ignore that for now.

2.89 GPU registers

Our next stop will be an unhandled LW at address 0x1£801814. This register
is GPUSTAT when read and GP1 when written. In other words GPUSTAT is
read only while GP1 is write only and they share the same address. Why not.

GPUSTAT contains a whole bunch of information about the GPU status.
Things like the display’s resolution and color depth, interlacing, DMA channel
status and more.

It seems we're entering to the display initialization code, we might soon be
pushing our first pixels to the screen! Boot logo, here we come.

79

Well, let’s not get ahead of ourselves, for now we have zero GPU emulation
code so we're going to use the usual deception and have the BIOS read zeroes
when it attempts to access the GPU register space. That’s easy, there are only
two registers in the GPU@

impl Interconnect {

/..

/// Load 32bit word at ‘addr®
pub fn load32(&self , addr: u32) —> u32 {

/] ..

if let Some(offset) = map::GPU.contains (abs_addr) {
println ! (”?GPU_read _{}”, offset);

return O0;

}

panic!(”unhandled_load32_at_address_{:08x}”, addr);

2.89.1 GPO: Draw Mode Setting command

Very soon after that we get an unhandled write32 at address 0x1£801810. This
is the other GPU register address. This one is GP0 for writing and it’s used to
queue commands.

We'll study the GPU more closely soon but for now it suffices to say that it’s
programmed differently from the other peripherals we’ve seen so far: instead of
having dedicated registers for the various function, the CPU (or DMA) queues
commands in one of the two ports (GP0 and GP1) which behave like FIFOs.
The GPU then executes the commands one after an other.

Commands include drawing triangles, lines and sprites with various attributes
but also things like interrupt management and display configuration.

In order to interpret a GPU command we must first see to which port it
was posted (GPO in this case). Then we must look at the value: 0xe1001000
here. The high byte (0Oxel) is the “opcode”, the remaining 24bits are parameters
whose meaning depends on the command.

This particular opcode is “Draw Mode Setting”. It mostly sets a bunch of
texture-related parameters. In this particular instance only bit 12 is set which
activates “Textured Rectangle X-Flip”. Not exactly obvious why the BIOS is
doing this right now but I guess we’ll figure out that soon.

For now we’re still working on our CPU, so let’s just ignore writes to the
GPU ports and hope we can get away with it:

impl Interconnect {

/] ...

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self , addr: u32, val: u32) {
/.

if let Some(offset) = map::GPU.contains (abs_addr) {
println ! ("GPU_write_{}:.{:08x}”, offset, val);
return;

24Well, four really: two read only and two write only sharing the same addresses.

80

}

panic!(”unhandled._store32._into_address_{:08x}:_.{:08x}"”,
addr, val);

2.90 Interrupt Control 16bit access

Unfortunately we don’t go very far, the BIOS then wants to make a 16bit read
at the Interrupt Mask address. So far we’ve only implemented 32bit access so
let’s add halfword support:

impl Interconnect {

/] ...

/// Load 16bit halfword at ‘addr®
pub fn loadl6(&self, addr: u32) —> ul6 {

/..

if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println ! ("IRQ_control._read.{:x}”, offset);
return 0;

Unsurprisingly it’s followed by a 16 bit write to the same address with the
value 1. This means that the BIOS wants to use the first interrupt which is the
vertical blanking interrupt generated by the GPU’s video output. As usual let’s
ignore that:

impl Interconnect {

/..

/// Store 16bit halfword ‘val‘ into ‘addr®
pub fn storel6(&mut self, addr: u32, val: ul6) {

/]

if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println!(7IRQ_control _write_{:x},_.{:04x}”, offset , val)

b
return;

2.91 Timer registers 32bit access

After that we get an unhandled 32bit access to the timers range.

This time the BIOS wants to store Oxffffffff at 0x1£801118 which is the
counter target value for timer 1. When the counter reaches that value it goes
back to 0 and optionally generates an interrupt. The counter is only 16bit wide
though so this write would actually set the target value to Oxffff and the upper
16bits are ignored.

Let’s add our usual placeholder code:

81

impl Interconnect {

/] ...

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
/]

if let Some(offset) = map::TIMERS. contains (abs_addr) {
println!(” Unhandled_write_to_timer.register.{:x}:.{:08x

} bl

return;

offset , val);

After that the BIOS writes 0x148 to 0x1£801114 which sets the timer 1 mode.
Bit 0x8 clears the counter (resets it to 0), bit 0x40 sets the timer interrupt to
repeat mode which means that it will fire periodically when the counter reaches
the target. Finally bit 0x100 sets the clock source as “horizontal blanking”.
It means that the timer increments when the display reaches the horizontal
blanking period.

This doesn’t set bit 0x10 however which would actually enable the interrupt.
And it hasn’t attempted to unmask the interrupt in the Interrupt Mask register
either anyway. Not sure where the BIOS is going with this.

After that the BIOS tries to change the value of the Interrupt Mask and
enables interrupt 0x8 which is the DMA’s.

2.92 GPUSTAT “DMA ready” field

At this point the BIOS enters an infinite loop: it reads the GPUSTAT register
again and again. Obviously it’s waiting for something to happen but since we
only ever return 0 it deadlocks.

If we disassemble that loop the code looks like this (it’s in the BIOS at
address 0xbfc04190):
lw $8, 0(36) /* Here $6 is equal to 0x1f801814 (GPUSTAT) =/
nop /% load delay slot x/

and $9, $8, 34 /% Here $4 contains 0x10000000 =/
beq $9, $0, —44 /+ Loop back if $9 is zero x*/

There are more things in the loop but that’s the important part. We can see
that the BIOS loads GPUSTAT, masks bit 28 and loops if it’s 0.

If we look at the specs we can see that bit 28 of GPUSTAT tells if the GPU
is ready to receive a DMA block. So it seems that the BIOS is polling this bit in
GPUSTAT because it’s about to initiate a DMA transfer between the RAM and
the GPU.

Let’s modify our GPUSTAT handling code to return 0x10000000 when read:

impl Interconnect {

/..

/// Load 32bit word at ‘addr*
pub fn load32(&self, addr: u32) —> u32 {

/]

if let Some(offset) = map::GPU. contains (abs_addr) {

82

println ! ("GPU_read _{}”, offset);
return match offset {
// GPUSTAT: set bit 28 to signal that the GPU is
ready
// to receive DMA blocks
4 => 0x10000000 ,
- = 0,

/] ...

This lets the BIOS continue the execution a little further.

2.93 XOR instruction

We then encounter an unhandled instruction: 0x0303c¢826 which encodes an
“exclusive or” (XOR):

‘xor $25, $24, $3

We can implement it by copying the OR method and replacing the | operator
with ~:
mod Cpu {
/] ..

/// Bitwise Exclusive Or

fn op_xor(&mut self, instruction: Instruction) {
let d = instruction.d();
let s = instruction.s();
let t = instruction.t();

let v = self.reg(s) self.reg(t);

self.set_reg(d, v);

With this instruction implemented the BIOS then goes on to write a bunch of
DMA registers and then gets stuck in an other infinite loop, polling GPUSTAT
once again.

We could look at what the BIOS is doing once again to try and figure out
the right value to return to let it continue but that would be a bit pointless at
that point. We’ve almost implemented all the CPU instructions anyway and
we’ve reach the part of the BIOS where the bootup logo is drawn. We need to
implement the DMA to send the commands to the GPU and then emulate the
GPU itself to accept those commands and draw on the screen.

Before we move on though let’s implement the handful of CPU opcodes we
haven’t yet encountered. At this point we’ve implemented 48 opcodes and 19
are remaining. Fortunately most of those are variations of instructions we’ve
already implemented so let’s get this over with.

2.94 BREAK instructions

BREAK triggers an exception like SYSCALL but it sets code 9 in the CAUSE
register. This instruction is generally meant to create software breakpoints in

83

code for debugging purposes but I imagine some games might abuse it for other
purposes.

This instruction is encoded by setting bits [31:26] of the instruction to zero
and bits [5:0] to 0xd.
impl Cpu {

/!

/// Break

fn op-break(&mut self, _: Instruction) {
self.exception (Exception :: Break);

}

}

/// Exception types (as stored in the ‘CAUSE‘ register)
enum Exception {

/// Breakpoint (caused by the BREAK opcode)
Break = 0x9,

2.95 MULT instruction

“Multiply” (MULT) is simply the signed counterpart to MULTU. It multiplies its
operands using 64bit signed arithmetics and stores stores the result in HI and
LO.

This instruction is encoded by setting bits [31:26] of the instruction to zero
and bits [5:0] to 0x18.
impl Cpu {

/!

/// Multiply (signed)
fn op-mult(&mut self, instruction: Instruction) {

let s = instruction.s();
let t = instruction.t();
let a = (self.reg(s) as i32) as i64;
let b = (self.reg(t) as i32) as i64;

let v= (a % b) as ub4;

self.hi = (v >> 32) as u32;
self .lo = v as u32;

All those casts are a bit ugly but they’re necessary to get the proper sign
extension.

2.96 SUB instruction

“Substract” (SUB) is like SUBU but with signed arithmetics and it triggers an
exception on signed overflow.

This instruction is encoded by setting bits [31:26] of the instruction to zero
and bits [5:0] to 0x22.

84

impl Cpu {
/// Substract and check for signed overflow

fn op-sub(&mut self, instruction: Instruction) {
let s = instruction.s();

let t = instruction.t();
let d = instruction.d();
let s = self.reg(s) as i32;
let t = self.reg(t) as i32;

match s.checked_sub(t) {
Some(v) => self.set_reg(d, v as u32),
None => self.exception(Exception:: Overflow),

2.97 XORI instruction

“Exclusive or immediate” (XORI) is the version of the XOR instruction taking
an immediate operand. We can implement it by taking the code for ORI and
changing the operator.

This instruction is encoded by setting bits [31:26] of the instruction to Oxe.

impl Cpu {

/// Bitwise eXclusive Or Immediate
fn op-xori(&mut self, instruction: Instruction) {

let i = instruction .imm() ;
let t = instruction.t();
let s = instruction.s();

let v = self.reg(s) ij;

self .set_reg(t, v);

2.98 Copl, cop2 and cop3 opcodes

We’ve implemented cop0 instructions (MTCO, RFE etc...). The three other
coprocessors can also have dedicated opcodes. On the Playstation however copl
and cop3 are not used so any instruction targeting them will trigger an exception
with code 0xb to signal a coprocessor error..

Copl and cop3 opcodes are encoded by setting bits [31:26] of the instruction
to 0x11 and 0x13 respectively.

impl Cpu {
/]
/// Coprocessor 1 opcode (does not exist on the Playstation)
fn op-copl(&mut self, _: Instruction) {

self.exception (Exception:: CoprocessorError);

}

85

/// Coprocessor 3 opcode (does not exist on the Playstation)

fn op-cop3(&mut self, _: Instruction) {
self.exception(Exception:: CoprocessorError);

}

}

/// Exception types (as stored in the ‘CAUSE‘ register)
enum Exception {

/] ...

/// Unsupported coprocessor operation
CoprocessorError = 0xb,

Cop2 however is implemented on the Playstation: it’s the Geometry Trans-
form Engine (GTE). We don’t need to implement the GTE for now so let’s just
add a dummy implementation that will crash the emulator if a GTE instruction
is encountered.

Cop opcodes are encoded by setting bits [31:26] of the instruction to 0x12.
impl Cpu {

/!

/// Coprocessor 2 opcode (GTE)

fn op-cop2(&mut self, instruction: Instruction) {
panic!(”unhandled .GTE_.instruction:_{}”, instruction);

}

2.99 Non-aligned reads

So far we’ve seen that all CPU memory transactions had to be properly aligned
or they would trigger an exception. The MIPS instruction set does however have
limited support for unaligned access. For unaligned reads it provides “load word
left” (LWL) and “load word right” (LWR).

Both those instruction work by fetching the aligned word containing the
addressed byte and then shifting the value to only update the correct portion of
the target register.

Therefore in order to load a single unaligned word you need to run a both a
LWL and a LWR in sequence (the order doesn’t matter) to fetch the 32bits.

The behaviour of both these instructions changes depending on whether the
CPU is running in big or little-endian mode. Since the PSX runs exclusively in
little endian we can ignore the other case.

For a little endian architecture and assuming $2 contains the potentially
unaligned load address the sequence would look like this:

/* Load right part of potentially unaligned word at $2 %/
lwr $1, 0($2)

/* Load left part of potentially unaligned word at $2 x/
lwl $1, 3(%$2)

After this sequence $1 contains the 4byte little endian value at the address
stored in $2 regardless of its alignment.

You can see that the LWL instruction is given an offset of 3. If the address
was correctly aligned we remain within the same aligned 32bit word, otherwise
we’ve moved to the next one.

86

Okay, that might sound a bit complicated, hopefully everything will be clearer
when we see the code of the implementation.

Before that however it’s important to note a specificity of these unaligned
word instructions: you’ll notice that in my asm snippet above I run the two
instructions back-to-back without delay. That’s because those instructions can
merge their data with that of a pending load without having to wait for the load
to finish.

For other load instructions it wouldn’t make a lot of sense (why would you
want to load twice to the same target register without doing anything with the
first value?) but since LWL and LWR are meant to be used together to load a
single value it makes sense to spare a cycle therﬂ

2.99.1 LWL instruction

The “load word left” (LWL) opcode is encoded by setting bits [31:26] of the
instruction to 0x22.
impl Cpu {

/!

/// Load Word Left (little —endian only implementation)
fn op-lwl(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

// This instruction bypasses the load delay restriction:
this

// instruction will merge the new contents with the value

// currently being loaded if need be.

let cur.v = self.out_regs[t.0 as usize];

// Next we load the xaligned* word containing the first
// addressed byte

let aligned_addr = addr & !3;

let aligned_-word = self.load32(aligned-addr);

// Depending on the address alignment we fetch the 1, 2, 3
or
// 4 xmost*x significant bytes and put them in the target
// register.
let v = match addr & 3 {
0 => (cur.v & OxOOffffff
=> (cur.v & 0x0000ffff
(cur-v & 0x000000ff
=> (cur_v & 0x00000000
_ => unreachable!(),

aligned_-word << 2
aligned_word << 1
aligned_word << 8
aligned_word << 0

Py

w o =
Il
\%

N NN

s

// Put the load in the delay slot
self.load = (t, v);

25Interesting bit of trivia: apparently the LWL and LWR instructions were patented. The
patent expired in 2006 and some people claimed that it might also have covered software
implementations. If that’s true it means one could not have distributed our emulator without
a license from MIPS Computer Systems.

87

https://encrypted.google.com/patents/US4814976
https://www.linux-mips.org/archives/linux-mips/2003-05/msg00189.html

}

Hopefully the comments are clear enough to follow what the code is doing.
You can see that LWL updates one, two, three or all four bytes in the target
register depending on the address alignment.

Note the direct reference to self.out_regs instead of our usual helper to
make sure we ignore the load delay when the two instructions are used in
sequence.

2.99.2 LWR instruction

The “load word right” (LWR) opcode is encoded by setting bits [31:26] of the
instruction to 0x26. The implementation is very similar to LWL with a few key
changes:

impl Cpu {

/!

/// Load Word Right (little —endian only implementation)
fn op-lwr(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping-add(i);

// This instruction bypasses the load delay restriction:
this

// instruction will merge the new contents with the value

// currently being loaded if need be.

let cur.v = self.out_regs[t.0 as usize];

// Next we load the xaligned* word containing the first
// addressed byte

let aligned_addr = addr & !3;

let aligned_-word = self.load32(aligned_addr);

// Depending on the address alignment we fetch the 1, 2, 3
or

// 4 xleast* significant bytes and put them in the target

// register.

let v = match addr & 3 {

0 => (cur_v & 0x00000000
=> (cur_v & 0xff000000
=> (cur-v & Oxffff0000
=> (cur.v & Oxf{fffffoo
_ => unreachable!(),

aligned_word >> 0
aligned_word >> 8
aligned_word >> 1
aligned_word >> 2

—— e —

W N =
—~ e~~~

s

// Put the load in the delay slot
self.load = (t, v);

You can see that like LWL we update from one to four bytes depending on
the alignment, however this time it’s the least significant bytes.

88

2.100 Non-aligned writes

Naturally the MIPS instruction set doesn’t only support loading non-aligned
words, it can also store them using “store word left” (SWL) and “store word
right” (SWR).

The concept is the same: to store a 32bit integer at an unaligned access one
would call SWR and SWL in sequence to update the entire word.

2.100.1 SWL instruction

The “store word left” (SWL) opcode is encoded by setting bits [31:26] of the
instruction to 0x2a. Since we only update part of the aligned target word we
have to fetch its value before we can modify it and store it back again:

impl Cpu {

/// Store Word Left (little —endian only implementation)
fn op_swl(&mut self, instruction: Instruction) {

let i = instruction.imm-_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);
let v self.reg(t);

let aligned_addr = addr & !3;

// Load the current value for the aligned word at the
target

// address

let curmem = self.load32(aligned_addr);

let mem = match addr & 3 {

0 => (cur-mem & Oxffffffo00) | (v >> 24),
1 => (cur-mem & O0xffff0000) | (v >> 16),
2 => (cur-mem & 0xff000000) | (v >> 8),
3 => (cur.mem & 0x00000000) | (v >> 0),
_ => unreachable!(),

s

self.store32 (aligned_-addr , mem);

2.100.2 SWR instruction

The “store word right” (SWR) opcode is encoded by setting bits [31:26] of the
instruction to 0x2e. It’s very similar to SWL except for a a few key differences:
impl Cpu {

/] ...

/// Store Word Right (little —endian only implementation)
fn op-swr(&mut self, instruction: Instruction) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

89

let addr = self.reg(s).wrapping-add(i);
let v = self.reg(t);

let aligned_addr = addr & !3;

// Load the current value for the aligned word at the
target

// address

let cur-mem = self.load32(aligned_-addr);

let mem = match addr & 3 {

0 => (cur.mem & 0x00000000) | (v << 0),
1 = (cur-mem & 0x000000ff) | (v << 8),
2 = (cur_mem & 0x0000ffff) | (v << 16),
3 = (cur-mem & OxOQOffffff) | (v << 24),
- => unreachable!(),

}s

self.store32(aligned_addr , mem);

2.101 Coprocessor loads and stores

We’ve seen that MTCO and MFCO can be used to move data between the general
purpose registers and the coprocessor 0. That means that if you want to load or
store a cop0 register value from or to the memory we have to pass through the
CPU general purpose registers.

The coprocessor 2 (the GTE) supports an additional, more optimized way to
do this: “load word to coprocessor 2” (LWC2) and “store word from coprocessor
27 (SWC2). Those instructions respectively load and store a cop2 register directly
from and to memory.

Since the other coprocessors don’t support these opcodes they generate a
“coprocessor error” exception when they’re encountered.

2.101.1 LWZCn instructions

“Load word coprocessor n” (LWCn) opcodes are encoded by setting bits [31:26]
of the instruction 0x30 + n.

impl Cpu {
/// Load Word in Coprocessor 0
fn op-lwcO(&mut self, _: Instruction) {

// Not supported by this coprocessor
self . exception (Exception:: CoprocessorError);

}
/// Load Word in Coprocessor 1
fn op-lwcl(&mut self, _: Instruction) {
// Not supported by this coprocessor
self.exception (Exception:: CoprocessorError);
}

/// Load Word in Coprocessor 2

fn op-lwc2(&mut self, instruction: Instruction) {
panic!(”unhandled .GTE.LLWC: .{}”, instruction);

}

90

/// Load Word in Coprocessor 3

fn op-lwc3(&mut self, _: Instruction) {
// Not supported by this coprocessor
self.exception (Exception:: CoprocessorError);

2.101.2 SWCn instructions

“Store word coprocessor n” (SWCn) opcodes are encoded by setting bits [31:26]
of the instruction 0x38 + n.

impl Cpu {
/// Store Word in Coprocessor 0
fn op_swcO(&mut self , _: Instruction) {

// Not supported by this coprocessor
self.exception(Exception:: CoprocessorError);

}
/// Store Word in Coprocessor 1
fn op-swcl(&mut self, _: Instruction) {
// Not supported by this coprocessor
self.exception(Exception:: CoprocessorError);
}

/// Store Word in Coprocessor 2
fn op.swc2(&mut self , instruction: Instruction) {
panic!(”unhandled .GTE.SWC: .{}”, instruction);

/// Store Word in Coprocessor 3

fn op-swc3(&mut self, _: Instruction) {
// Not supported by this coprocessor
self.exception(Exception:: CoprocessorError);

2.102 TIllegal instructions

We now have implemented (at least partially) all the CPU instructions! That
doesn’t mean that our CPU is complete: we still have to implement the GTE
coprocessor and the cache for instance but that will wait for later.

We can also take this opportunity to implement illegal instructions. For
instance instruction 0x50000000 doesn’t encode any valid instruction on the
Playstation CPU and is therefore illegal.

Illegal instructions simply trigger an exception on the CPU with the code
Oxa in the CAUSE register.

Knowing that we can complete our decode_and execute function, here’s
what it should look like with all instructions implemented:
impl Cpu {

/// Decode ‘instruction ‘’s opcode and run the function
fn decode_and_execute(&mut self, instruction: Instruction) {

91

match instruction.function () {
0b000000 => match instruction.subfunction ()

0b000000
0b000010
0b000011
0b000100
0b000110
0b000111
0b001000
0b001001
0b001100
0b001101
0b010000
0b010001
0b010010
0b010011
0b011000
0b011001
0b011010
0b011011
0b100000
0b100001
0b100010
0b100011
0b100100
0b100101
0b100110
0b100111
0b101010
0b101011

} k)

0b000001 =>
0b000010 =>
0b000011 =>
0b000100 =>
0b000101 =>
0b000110 =>
0b000111 =>
0b001000 =>
0b001001 =>
0b001010 =>
0b001011 =>
0b001100 =>
0b001101 =>
0b001110 =>
0b001111 =>
0b010000 =>
0b010001 =>
0b010010 =>
0b010011 =>
0b100000 =>
0b100001 =>
0b100010 =>
0b100011 =>
0b100100 =>
0b100101 =>
0b100110 =>
0b101000 =>
0b101001 =>
0b101010 =>
0b101011 =>

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
4
=
=
=
=
=
=
=

self .
self.
self.

self

self.

self

self .
self .
self.
self .
self.
self.

self

self .
self .
self.
self .
self.
self.

self

self.
self .
self .
self .
self.

self
self

self.
self.
self .

self.op_sll(instruction),
self.op_srl(instruction),
self .op_sra(instruction),

self.op_sllv (instruction),
self.op_srlv(instruction),
self.op_srav (instruction),

self.op_jr(instruction),

self.op_jalr (instruction),
self.op_syscall(instruction),
self.op_break (instruction),
self.op_mfhi(instruction),

self.op_-mthi

(instruction),
self.op_-mflo(instruction)
self.op-mtlo(instruction)
self.op_mult(instruction)
self.op_-multu(instruction
self.op_div(instruction),

)
)
)
))

self.op_divu(instruction),

self.op_add(instruction),

self.op-addu(instruction),

self.op-sub(instruction),

self.op_subu(instruction),

self.op_and(instruction),
self.op_or(instruction),
self.op_xor(instruction),
self .op_nor(instruction),
self.op_slt(instruction),

self.op_sltu(instruction),
self.op_illegal (instruction),

op-bxx (instruction),
op_j(instruction),
op-jal(instruction),
.op-beq(instruction),
op-bne(instruction),
.op-blez (instruction)
op-bgtz (instruction)
op-addi(instruction)
op-addiu(instruction
op-slti(instruction)
op_sltiu(instruction
op-andi(instruction)
.op-ori(instruction),
op-xori(instruction)
op-lui(instruction),
op_copO(instruction)
op-copl(instruction)
op_cop2(instruction)
op-cop3(instruction)
.op_lb(instruction),
op-lh(instruction),
op-lwl(instruction),
op_lw(instruction) ,
op-lbu(instruction)
op-lhu(instruction)
.op-lwr (instruction)
.op_sb(instruction),
op-sh(instruction),
op-swl(instruction),
op-sw(instruction) ,

)
)

)

92

)

)
)

)
)
)
)

)

)

)

{

0b101110 => self.op-swr(instruction),
0b110000 => self.op_lwcO(instruction),
0b110001 => self.op-lwcl(instruction),
0b110010 => self.op_lwc2(instruction),
0b110011 => self.op-lwc3(instruction),
0b111000 => self.op_swcO(instruction),
0b111001 => self.op-swcl(instruction),
0b111010 => self.op-swc2(instruction),
0b111011 => self.op-swec3(instruction),

_ => self.op-illegal (instruction),

}

/// Illegal instruction

fn op-illegal(&mut self , instruction: Instruction) {
println!(”Illegal_instruction.{}!”, instruction);
self.exception (Exception:: Illegallnstruction);

}

/// Exception types (as stored in the ‘CAUSE‘ register)
enum Exception {

/// CPU encountered an unknown instruction
Illegallnstruction = Oxa,

That’s quite a milestone but it’s only the beginning. While implementing all
those instructions and stepping through the BIOS we’ve seen that it tries to use
many peripherals: the SPU, the timers, the DMA and the GPU in particular.

At this point my first objective is to display an image to the screen so I want
to start implementing the GPU as soon as possible. But we won’t be able to do
anything useful with the GPU without the DMA, so let’s start with that.

3 The DMA: Ordering tables and the GPU

TheDMA!is used to move data back and forth between the RAM and a peripheral
(GPU, CDROM, SPU, etc...). The CPU could achieve the same results by a
series of loads/stores but the DMA is generally much faster.

The Playstation DMA controller lives alongside the CPU and shares the
memory BUS with it. It means that while the DMA is busy transferring data the
CPU is stopped: only one device can access the BUS at a given time. The DMA
can only copy data between the RAM and a device, not directly between two
devices. For instance you can’t copy a texture from the CDROM directly into
the GPU with the DMA, you first have to make a transfer from the CDROM
into the main RAM and then a 2nd one between the RAM and the GPU.

There are 7 DMA channels on the Playstation:

e Channel 0 is connected to the Media Decoder input

Channel 1 is connected to the Media Decoder output

Channel 2 is connected to the GPU

Channel 3 is connected to the CDROM drive

93

https://en.wikipedia.org/wiki/Direct_memory_access

e Channel 4 is connected to the SPU
e Channel 5 is connected to the extension port

e Channel 6 is only connected to the RAM and is used to clear an “ordering
table”

Implementing complete and accurate DMA support can be quite tricky. The
main problem is that in certain modes the DMA sporadically gives back the
control to the CPU. For instance while the GPU is busy processing a command
and won’t accept any new input the DMA has to wait. Instead of wasting time
it gives back control to the CPU to give it the opportunity to do something else.

In order to emulate this behaviour correctly we need to emulate the GPU
command FIFO, DMA timings and CPU timings correctly. Then we need to
setup the state machine to switch between the CPU and DMA when needed.
That would require quite some work to get right and we only have the BIOS
boot logo to test it at this point.

To avoid having to implement all that we’re going to make a simplifying
assumption for now: when the DMA runs it does all the transfer at once without
giving back control to the CPU. This won’t be exactly accurate but it should
suffice to run the BIOS and hopefully some games.

The reason I feel confident doing this simplification is that PCSX-R seems to
do it that way and it can run quite many games, although some comments hint
that it breaks with certain titles and it uses some hacks to improve compatibility.
Mednafen on the other hand implements a much accurate DMA and actually
emulates the DMA giving back the control to the CPU in certain situations,
we’ll probably want to do something similar later on.

For now let’s take a few steps back and revisit all the DMA register reads
and writes done by the BIOS so that we can emulate them correctly.

3.1 DMA Control register

If we look at the DMA register access in our emulator we can see that the
first one is a read at 0x1£8010f0 which is offset 0x70 in the DMA register
range. This register is the DMA Control register which sets the priority of each
channel and whether or not they’re enabled. We don’t really care about the port
priorities since we’ll be running each channel transaction entirely at once (so
we’ll never have two channels active at once for now) and I'm not entirely sure
what disabling a channel does (does it prevent accessing the channel’s register?
What happens if a game attemps to start a disabled channel?). For now we’ll
just implement a dummy register read/write access.

We’'re going to wrap the DMA code in a dedicated struct to keep our code tidy.
The Nocash spec says that the reset value for the control register is 0x07654321
which means that all channels are disabled and the priority increases with the
channel number:

/// Direct Memory Access
pub struct Dma {

/// DMA control register
control: u32,

}

impl Dma {

94

pub fn new() —> Dma {
Dma {
// Reset value taken from the Nocash PSX spec
control: 0x07654321,

}

/// Retrieve the value of the control register
pub fn control(&self) —> u32 {

self.control
}

We can then add an instance of this struct Dma in our interconnect and
glue our new control method when the register is accessed:

/// Global interconnect
pub struct Interconnect {

/] ...

/// DMA registers
dma: Dma,

}

impl Interconnect {
pub fn new(bios: Bios) —> Interconnect {
Interconnect {

/] ..

dma: Dma::new(),

}

/// Load 32bit word at ‘addr®
pub fn load32(&self , addr: u32) —> u32 {

/..

if let Some(offset) = map::DMA. contains (abs_addr) {
return self.dma_reg(offset);
}

}

/// DMA register read
fn dma_reg(&self , offset: u32) — u32 {
match offset {
0x70 => self.dma.control(),
- => panic!(”unhandled DMA_access”)

The BIOS then writes back 0x076£4321 to the the same register which means
that it enables channel 4 (the SPU) and sets it priority to 7. Let’s implement
write support for the control register:

impl Interconnect {

/]

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
/.

if let Some(offset) = map::DMA. contains(abs_addr) {

95

return self.set_.dma_reg(offset , val);

}

/// DMA register write
fn set_.dma_reg(&mut self , offset: u32, val: u32) {
match offset {
0x70 => self.dma.set_control(val),
_ => panic!(”unhandled DMA_write_access”)

}
}
}
impl Dma {
/.
/// Set the value of the control register
pub fn set_control(&mut self, val: u32) {
self.control = val
}
}

Not very exciting so far.

3.2 DMA Interrupt register

After that the BIOS writes 0 to the DMA register at offset 0x74. This one is
the DMA Interrupt register and as its name implies it is used to configure and
acknowledge the DMA interrupts.

Bits [22:16] enable the interrupt individually for each channel. Bit 23 is the
master enable: if it’s 0 then no interrupt is generated by any channel. Bit 15 on
the other hand forces the generation of an interrupt continuously when it’s set.

When a channel generates an interrupt it needs to be acknowledged to reset
it to an inactive status. This is done by writing 1 to bits [24:30] (one bit per
channel). Finally bits [5:0] are read/write but I don’t know what they do, we’ll
juts preserve them and hope they’re not important.

While we’re at it we’ll also implement reading this register. When read bits
[24:30] contain the IRQ status for each channel and bit 31 says if an interrupt is
currently active. The other fields retain the last value written to them. In code
it looks like this%}

/// Direct Memory Access
pub struct Dma {

/..

/// master IRQ enable

irq-en: bool,

/// IRQ enable for individual channels

channel_irq_en: u8,

/// IRQ flags for individual channels

channel_irq_flags: u8,

/// When set the interrupt is active unconditionally (even if
/// ‘irq-en ¢ is false)

force_irq: bool,

26You’ll notice that I split the register in individual variables, I prefer to do that when know
T’ll have to manipulate the fields individually. It makes the code clearer and less error prone in
my experience. It has a small cost however: it takes up a little more memory and we have to
pack/unpack them when handling registers read/writes.

96

/// Bits [0:5] of the interrupt registers are RW but I don’t
know

/// what they’re supposed to do so I just store them and send
them

/// back untouched on reads

irg_dummy: u8,

}
impl Dma {
//
/// Return the status of the DMA interrupt
fn irq(&self) —> bool {
let channel_.irq = self.channel_irq_flags & self.
channel_irq_en;
self.force_irq || (self.irg_en && channel_irq != 0)
}
/// Retrieve the value of the interrupt register
pub fn interrupt(&self) — u32 {
let mut r = 0;
r |= self.irq.dummy as u32;
r |= (self.force_irq as u32) << 15;
r |= (self.channel_irq_en as u32) << 16;
r |= (self.irq-en as u32) << 23;
r |= (self.channel_irq_flags as u32) << 24;
r |= (self.irq() as u32) << 31;
r
}
/// Set the value of the interrupt register
pub fn set_interrupt(&mut self, val: u32) {
// Unknown what bits [5:0] do
self .irgq.dummy = (val & 0x3f) as u8;
self . force_irq = (val >> 15) & 1 != 0;
self .channel_irq_en = ((val >> 16) & 0x7f) as u8;
self .irq_en = (val >> 23) & 1 != 0;
// Writing 1 to a flag resets it
let ack = ((val >> 24) & 0x3f) as u8;
self.channel_irq_flags &= lack;
}
}

Then you’ll have to plug those accessor methods in the interconnect as
usual>’]

3.3 DMA Channel Control register

The next DMA access is at offset 0x28. This is the control register for channel 2
(the GPU). This register contain many important fields described in table

27From now on I'm not going to bother putting the glue code in the interconnect here when
it’s straightforward. If you’re having doubts you can look up the source code of the emulator
in the repository.

97

Field bits | Description

0 Transfer direction: RAM-to-device(0) or device-to-RAM(1)

1 Address increment(0) or decrement(1) mode

2 Chopping mode

[10: 9] Synchronization type: Manual(0), Request(1) or Linked List(2)
[18 : 16] Chopping DMA window

[22 : 20] Chopping CPU window
24 Enable
28 Manual trigger

[30 : 29] Unknown

Table 8: DMA Channel Control register description

Bit 0 sets the transfer direction (RAM-to-device or device-to-RAM), bit 1
tells us whether the DMA must increment or decrement the address in RAM
during the transfer.

Bits [10:9] configure the type of synchronization: the DMA either copies all
the data at once (Manual sync) or it can wait for the device to raise a “ready”
flag to request more data or say that data is available when reading (Request
sync). There’s a third mode, Linked List sync, which is used with the GPU.
We’ll explain what it does when we look at ordering tables in a moment.

Bit 24 enables the channel and starts the transfer in Request or Linked List
sync mode. Bit 28 is the trigger to start the tranfer in Manual sync mode.

Bit 8 enables “chopping”: when active the DMA will periodically stop to let
the CPU run for a while. Bits “[18:16]” and “[22:20]” respectively say how often
and for how long the control must be given back to the CPU. At this point I'm
not entirely sure if chopping only works in Manual sync mode or all the time. It
doesn’t really matter since we won’t implement it for now.

Finally bits [30:29] are read/write but I don’t know what they dd>]

The current value of ‘0x401° sets the transfer direction to RAM-to-device
and the sync mode to Linked List. It doesn’t set bit ‘24‘ to enable the channel
however so nothing happenﬂ

Since there are 7 DMA channels I'm going to factor all channel-related code
in a Channel structure:

/// Per—channel data

struct Channel {
enable: bool,
direction: Direction ,
step: Step,
sync: Sync,
/// Used to start the DMA transfer when ‘sync‘ is ‘Manual’
trigger: bool,
/// If true the DMA ”chops” the transfer and lets the CPU run
/// in the gaps.
chop: bool,
/// Chopping DMA window size (log2 number of words)
chop_dma_sz: u8,
/// Chopping CPU window size (log2 number of cycles)
chop_cpu-sz: u8,

28The Nocash docs speculate that bit 29 might be used to pause an ongoing transfer but
that will require some more testing.
29 And it’s a good thing since at that point no start address has been set!

98

/// Unkown 2 RW bits in configuration register
dummy: u8,

impl Channel {
fn new() —> Channel {
Channel {

enable: false ,
direction: Direction :: ToRam,
step: Step::Increment,
sync: Sync::Manual,
trigger: false ,
chop: false ,
chop_-dma_sz: 0,
chop_cpu_sz: 0,

dummy: O,
}
}
pub fn control(&self) —> u32 {
let mut r = 0;
r |= (self.direction as u32) << 0;
r |= (self.step as u32) << 1;
r |= (self.chop as u32) << 8;
r |= (self.sync as u32) << 9;
r |= (self.chop.dma_sz as u32) << 16;
r |= (self.chop_cpu_sz as u32) << 20;
r |= (self.enable as u32) << 24;
r |= (self.trigger as u32) << 28;
r |= (self.dummy as u32) << 29;
r
}
pub fn set_control(&mut self, val: u32) {
self.direction = match val & 1 != 0 {
true => Direction ::FromRam,
false => Direction ::ToRam,
s
self.step = match (val >> 1) & 1 != 0 {
true => Step::Decrement,
false => Step::Increment,
e
self.chop = (val >> 8) & 1 != 0;

self.sync = match (val >> 9) & 3 {
=> Sync:: Manual,
Sync :: Request ,
=> Sync:: LinkedList ,
=> panic!(”Unknown.DMA_sync._mode_{}”, n),

5 oo
Il
\%

self.chop.dma_sz = ((val >> 16) & 7) as u8;
self.chop_cpu_sz = ((val >> 20) & 7) as u8;

self .enable = (val >> 24) & 1 != 0;
self . trigger = (val >> 28) & 1 != 0;

99

}

self .dummy = ((val >> 29) & 3) as u8;

/// DMA transfer direction

pub

}

enum Direction {
ToRam =0,
FromRam = 1,

/// DMA transfer step

pub

}

enum Step {
Increment = 0,
Decrement = 1,

/// DMA transfer synchronization mode

pub

enum Sync {

/// Transfer starts when the CPU writes to the Trigger bit and
/// transfers everything at once

Manual = 0,

/// Sync blocks to DMA requests

Request = 1,

/// Used to transfer GPU command lists

LinkedList = 2,

We can then put an array of 7 Channel instances in our struct Dma with
some methods to access them in the interconnect:

/// Direct Memory Access

pub struct Dma {
/..
/// The 7 channel instances
channels: [Channel; 7],

}

impl Dma {

/17

pub

/// Return a reference to a channel by port number.

pub fn channel(&self , port: Port) —> &Channel {
&self . channels [port as usize]

}

/// Return a mutable reference to a channel by port number.

pub fn channel mut(&mut self, port: Port) —> &mut Channel {
&mut self.channels[port as usize]

}

The 7 DMA ports

enum Port {

/// Macroblock decoder input
MdecIn = 0,

/// Macroblock decoder output
MdecOut = 1,

/// Graphics Processing Unit
Gpu = 2,

/// CD-ROM drive

CdRom = 3,

/// Sound Processing Unit

100

Spu = 4,
/// Extension port

Pio = 5,
/// Used to clear the ordering table
Otc = 6,

}

impl Port {
pub fn from_index (index: u32) —> Port {
match index {
=> Port :: Mdecln,
=> Port :: MdecOut,
=> Port ::Gpu,
=> Port ::CdRom,
> Port :: Spu,
=> Port :: Pio,
=> Port :: Otc,
=> panic!(”Invalid_.port_{}”, n),

B oUW RO
Il

That’s quite a lot of code to parse one register but it should make our life
easier later on.

Since the 7 channels have the same register layout we can rewrite our
Interconnect methods to be a little more generic:

Impl Interconnect {

/] ...

/// DMA register read

fn dma_reg(&self , offset: u32) —> u32 {
let major = (offset & 0x70) >> 4;
let minor = offset & 0xf;

match major {
// Per—channel registers

0...6 = {
let channel = self.dma.channel (Port:: from_index (
major));

match minor {
8 => channel.control (),
_ => panic!(” Unhandled DMA_read._at_{:x}”,
offset)

}
}7
// Common DMA registers
7 => match minor {
0 => self.dma.control(),
4 => self.dma.interrupt (),
_ => panic!(” Unhandled DMA_read_at_{:x}”, offset)
}

_ => panic!(”Unhandled DMA_read_at.{:x}”, offset)

}

/// DMA register write

fn set_-dma_reg(&mut self , offset: u32, val: u32) {
let major = (offset & 0x70) >> 4;
let minor = offset & 0xf;

101

match major {
// Per—channel registers

0...6 = {
let port = Port::from_index (major);
let channel = self.dma.channel_-mut(port);

match minor {
8 => channel.set_control(val),
_ => panic!(”Unhandled DMA_write_{:x}:.{:08x}”,
offset , val)

}
}7
// Common DMA registers
7= {
match minor {
0 => self.dma.set_control(val),
4 => self.dma.set_interrupt(val),
_ => panic!(”Unhandled DMA_write_{:x}:.{:08x}”,
offset , val),
}
}

- => panic!(”Unhandled DMA_write_{:x}:_{:08x}”,
offset , val),

3.4 DMA Base Address register

After that the BIOS writes 0x800eb8d4 to DMA register offset 0x60. It means
that the BIOS now moved to channel 6 (Clear Ordering Table) and sets the
Base Address register. Only the low 24 bits are used since it’s plenty enough to
address the whole RAM. This one is pretty straightforward: it gives the address
of the first word to be read or written in RAM. We can add it to our struct

Channel:

/// Per—channel data
struct Channel {

/// DMA start address
base: u32,

}

impl Channel {

fn new() —> Channel {

}

Channel {
/).
base: 0,

}

/// Retrieve the channel’s base address
pub fn base(&self) —> u32 {

}

self.base

102

/// Set channel base address. Only bits [0:23]

so

/// only 16MB are addressable by the DMA

pub fn set_base(&mut self, val: u32) {
self .base = val & Oxffffff;

3.5 DMA Block Control register

are significant

After plugging the base address methods in the interconnect we can proceed to
our next DMA register access: it’s the value 0x00000400 at offset 0x64. This
is our last unhandled DMA channel register: the Block Control. Its meaning
depends on the synchronization type in the channel Control register (see table

e In Manual sync mode only the low 16bits are used and they contain the

number of words to transfer.

e In Request sync mode the low 16 bits contain the block size in words while
the upper 16bits contain the number of blocks to transfer. The DMA will
transfer a block at a time and wait for the device to assert the “request”

flag before starting a new block.

e In Linked List mode this register is not used.

We can store the contents of this registers in two ul6s:

/// Per—channel data

#[derive (Copy)]
struct Channel {

/] ...

/// Size of a block in words
block_size: ul6,

/// Block count, Only used when ‘sync‘ is ‘Request*

block_count: ul6,

}
impl Channel {
/.
fn new() —> Channel {
Channel {
block_size: 0,
block_count: 0,
}
}

/// Retrieve value of the Block Control register

pub fn block_control(&self) —> u32 {
let bs = self.block_size as u32;
let bc = self.block_count as u32;

(be << 16) | bs

/// Set value of the Block Control register

pub fn set_block_-control(&mut self, val: u32) {

self.block_size = val as ul6;

103

self.block_count = (val >> 16) as ul6;

We can see that the BIOS initialized a base address and block size for channel
6, it’s no surprise that it then writes 0x11000002 to the channel control register.

The configuration is Manual sync mode, towards the RAM, with decreasing
addresses and it sets the enable and trigger bits to start the transfer.

We can now implement the DMA copy itself but before we do so we must
understand what this channel does exactly.

3.6 Depth Ordering Tables

DMA channel 6 is used to clear an ordering table in RAM. To understand what
it means we need a little background on the Playstation graphics pipeline.

The Playstation is an early 3D console and as such its 3D support is a bit
spotty. In particular the GPU doesn’t handle 3D primitives at all. That might be
surprising but as we’ll see later the GPU can only draw 2 dimensional primitives
like lines, triangles and rectangles in the framebuffer. There’s no Z coordinate
and therefore no z-buffer| or anything like that. If you have two overlapping
triangles whichever is drawn last will appear on top of the other.

That means that when a game wants to render a 3D scene it can’t just create
a [vertex buffer with 3D coordinates and have the GPU do the projection by itself
since it can only rasterize 2D graphics. Instead the CPU must do the projection
and send the draw commands in the right order (that is, from farthest to closest
from the point of view of the camera) to the GPU. This way closer objects will
appear above more distant ones when they overlap.

In order to do those computations more efficiently the CPU has a coproces-
sor called the “Geometry Transfor Engine” which can be used to project the
primitives and compute their distance to the camera.

All this code needs to be pretty efficient because in 3D games the camera’s
and objects’ positions can change at every frame which means that the position
of all primitives must potentially be recomputed every time. And in order to
do this more efficiently the Playstation hardware supports a construct called
“depth ordering tables”.

Let’s consider a concrete example: a game wants to draw a cube. In order
to do that it needs to render 6 quadrilaterals (or guads for short), one for each
side. Let’s assume that the player can move around the cube so that the game
doesn’t know ahead of time which side will be facing the camera.

We’ve seen that the game has to send the commands in the right order to the
GPU otherwise the back side might appear in front for instance. That means
that it must sort the primitives (the 6 quads) from back to front before sending
the commands to the GPU.

One possibility would be for the game to allocate a buffer big enough to
contain all the draw commands for the current scene, fill it with all the projected
primitives while sorting them in the correct order. If you want to draw a cube
that’s probably fine but for a complex scene with thousands of draw commands
the CPU load will become huge, it’ll spend its time sorting draw commands in
RAM.

Fortunately there’s an other solution: in order to keep the draw commands
ordered while not having to move things around all the time they’re stored in a

104

https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Vertex_Buffer_Object

linked list. As you know inserting an entry between two elements in a linked list
is very cheap: you just rewrite the element’s list pointers and you're done.

So here’s how a depth ordering table is implemented: each command is
stored in a “packet”, somewhere in RAM. A packet starts with a 32bit “header”
word. The low 24bits of that word are the address of the next packet in RAM
or Oxffffff if it’s the last item and the high 8bits are the number of words in
the packet.

You start with an empty table: you create an array of empty packets in RAM
(only 32bit headers with the high 8bits set to 0 to indicate they’re empty) and
you make each entry point to the address of the previous one and the last one
set to Oxffffff. So you have a linked list of empty elements stored in an array
in reverse order. Sounds silly but it’s actually very handy.

Now when the CPU wants to render a primitive it computes its distance to
the camera, normalizes it over the size of the ordering table and uses it as an
index. It can then take the value of the header at location in the table and insert
the draw command in the list at that point. This way it doesn’t have to iterate
through the entire list to figure out where the primitive goes, the ordering table
effectively works like a [lookup tablel

No matter the size of the scene, no matter how many elements have already
been inserted in the list you can always insert a new draw command by creating
a packet in ram, figuring out the depth index and updating two headers to insert
yourself in the right order. The computing cost is constant.

Of course, there can be collisions. Since there are only a finite number of
positions in the depth ordering tables two or more packets can end up sharing
the same slot. When that happens the newer element will point to the previous
one and will therefore be drawn first (regardless of whether it’s actually on front
or behind). The smaller the table the smaller the granularity. That explains
some of the visual glitches you can see in a lot of 3D games on the console, it’s
just a limitation of the hardware.

Once the game has finished projecting and sorting the scene’s draw command
it can send it to the GPU by starting from the last entry in the depth ordering
table and then iterating through the linked list until it reaches the Oxffffff
end-of-list marker.

3.7 DMA Clear Ordering Table channel

Enough theory, let’s implement DMA channel 6. So far I've encapsulated all
DMA-related code in the Dma and Channel structs, unfortunately putting the
copy code itself in them is a bit troublesome in Rust. The problem is that
this code needs to hold a reference to the various DMA-capable peripherals
(RAM, GPU, SPU, etc...) but Rust adds a lot of constraints on references (and
especially mutable references) to make sure the code is completely memory-safe.

There are ways to work around that (using RefCells, unsafe code etc...)
but I don’t want to bother with any of this so I'm just going to implement the
copy code directly in the Interconnect since it already has access to all the
peripherals.

First, in the set_dma_reg function I'm going to check if a write to a DMA
channel register activated it:

impl Interconnect {

/]

105

https://en.wikipedia.org/wiki/Lookup_table

/// DMA register write

fn set_.dma_reg(&mut self , offset: u32, val: u32) {
let major = (offset & 0x70) >> 4;
let minor = offset & Oxf;

let active_port =
match major {
// Per—channel registers

0...6 = {
let port = Port::from_index (major);
let channel = self.dma.channel_mut(port);

match minor {
0 => channel.set_base(val),
4 => channel.set_block_control(val),
8 => channel.set_control(val),
- =
panic!(” Unhandled DMA_write._{:x}:_{:08x}”
offset , val)

}

if channel.active () {
Some (port)

} else {
None
}
}7

// Common DMA registers

7T = {
/..
None
}

- => panic!(”Unhandled DMA_write_{:x}:_{:08x}”,
offset , val),

s

if let Some(port) = active_port {
self.do_dma(port);

}
}
}
impl Channel {
/// Return true if the channel has been started
pub fn active(&self) — bool {
// In manual sync mode the CPU must set the ”trigger” bit
// to start the transfer.
let trigger = match self.sync {
Sync :: Manual => self.trigger,
_ => true,
e
self .enable && trigger
}
}

Now the Interconnect’s do_dma method will be called when a transfer must
take place.

106

The Manual and Request modes both copy blocks of data from/to the RAM.
Linked List mode is a bit different since it hops around the RAM following the
pointers in the headers. For this reason making a generic function to handle all
three modes will be a bit tricky, I prefer to handle linked list separately:

impl Interconnect {

/..

/// Execute DMA transfer for a port

fn do.dma(&mut self, port: Port) {
// DMA transfer has been started, for now let ’s
// process everything in one pass (i.e. no
// chopping or priority handling)

match self.dma.channel(port).sync() {
Sync:: LinkedList => panic!(”Linked_.list _mode.
unsupported”),
_ => self.do_dma_block (port),

3.8 DMA Block copy

We can now implement the block copy function itself. We start at the base
address, we compute how many words we must copy by looking at the block
control values. Then we enter the copy loop: depending on the copy direction we
either read a word from RAM and send it to the device or the other way around.

Since channel 6 is only used to initialize an ordering table we only need to
implement the ‘ToRam‘ direction for now. Also the value copied into RAM
doesn’t come from an external peripheral, it’s just generated by the DMA based
on the current address:

impl Interconnect {

fn do_dma_block(&mut self, port: Port) {
let channel = self.dma.channel_mut(port);
let increment = match channel.step () {

Step :: Increment => 4,
Step :: Decrement => —4,

}
let mut addr = channel.base();

// Transfer size in words
let mut remsz = match channel.transfer_size () {
Some(n) => n,
// Shouldn’t happen since we shouldn’t be reaching this
// code in linked list mode
None =
panic!(” Couldn’t.figure_out DMA_block._transfer._size”)

}
while remsz > 0 {

// Not sure what happens if address is
// bogus... Mednafen just masks addr this way, maybe

107

}

// that’s how the hardware behaves (i.e. the RAM
// address wraps and the two LSB are ignored, seems
// reasonable enough

let cur_addr = addr & Ox1ffffc;

match channel.direction () {
Direction ::FromRam => panic!(” Unhandled DMA.
direction”),
Direction :: ToRam => {
let src_word = match port {
// Clear ordering table
Port :: Otc => match remsz {
// Last entry contains the end
// of table marker
1 = Oxffffff,
// Pointer to the previous entry
_ => addr.wrapping_-sub(4) & Ox1fffff |
- => panic!(”Unhandled DMA_source._port.{}”,
port as u8),

IS
self .ram.store32 (cur_addr, src_word);

}

addr = addr.wrapping_add (increment);
remsz ——= 1;

}

channel.done() ;

impl Channel {

/]

pub

}

pub

pub

/1]
/17

pub

fn direction(&self) —> Direction {
self . direction

fn step(&self) —> Step {
self .step

fn sync(&self) —> Sync {
self.sync

Return the DMA transfer size in bytes or None for linked
list mode.

fn transfer_size(&self) — Option<u3d2> {

let bs = self.block_size as u32;

let bc = self.block_count as u32;

match self.sync {

// For manual mode only the block size is used
Sync :: Manual => Some(bs),

// In DMA request mode we must transfer ‘bc‘ blocks
Sync:: Request => Some(bc % bs),

// In linked list mode the size is not known ahead of
// time: we stop when we encounter the ”end of list”

108

// marker (0xffffff)
Sync:: LinkedList => None,

}

/// Set the channel status to ”completed” state
pub fn done(&mut self) {

self.enable = false;

self.trigger = false;

// XXX Need to set the correct value for the other fields
// (in particular interrupts)

Note the conditional to write Oxffffff in the last iteration, it’s of course
important because otherwise the DMA won’t find the end of table marker and
start jumping randomly in RAM, sending crap to the GPU in the process. It’s
important to note that this is vital, and even the ”Sony Logo” won’t render
correctly if this is not implemented, if you're not receiving GP0(38h), this is
probably why.

When the copy is done I call the channel.done() method which clears the
trigger and enable flags. It should probably do more than that eventually, in
particular it should trigger the interrupt if it’s enabled. We’ll leave that for later.

We can now finally run our first DMA transfer in fulll The BIOS sets the
base address to 0x000eb8d4 and the block size to 1024 before starting channel 6
and we then initialize an empty ordering table.

After that the BIOS enters an infinite loop on the GPUSTAT register. This
time it’s waiting for bit 26 which is “ready to receive command word”. We are
going to set this bit by default and while we’re at it we’re also going to add bit
27 which is “ready to send VRAM to CPU”. This way we should avoid locking
the BIOS on this register in the future:

impl Interconnect {

/..

/// Load 32bit word at ‘addr®
pub fn load32(&self, addr: u32) —> u32 {

/..

if let Some(offset) = map::GPU. contains (abs_addr) {
return match offset {
// GPUSTAT: set bit 26, 27 28 to signal that the

GPU

// 1is ready for DMA and CPU access. This way the
BIOS

// won’t dead lock waiting for an event that’11
never

// come.

4 => 0x1c000000 ,

- =0,

With this modification the BIOS goes a little further and configures DMA
channel 2 to send a Linked List to the GPU.

109

3.9 DMA Linked Lists

Navigating the linked list is pretty straightforward: the BIOS puts the address
of the first list header is the DMA channel’s base address. We read the high byte
of the header to know the size of the packet (in words, not counting the header).
Packets are continuous in RAM so the data follows the header word directly.

Once the packet data has been sent to the device we look at the low 24bits of
the header. If it’s Oxffffff then we're done, otherwise it contains the address
of the next header and we loop.

T’'m not sure about if linked list mode is supported only by channel 2 (the
GPU) or if it’s available for other ports. As far as I can tell it’s only ever used
to send commands to the GPU however, I'll have to remember test that.

By the way, interesting bit of information for us emulator writers: it seems
that while the DMA offers a great deal of flexibility with a lot options and flags
only a handful of configs are ever used for each channel. PCSX-R hardcodes
those configs and simply ignores more exotic flag combinations (even though
they’re technically possible) and mednafen, while supporting most options, has
an optimized fast path for the common configs. The Nocash’s docs also lists
those common configs (and the few odd variations in some games). It means
that we can probably go a long way even if we don’t support some obscure
configurations.

Here’s what my simple linked list synchronization mode implementation looks
like:

impl Interconnect {

/] ...

/// Execute DMA transfer for a port

fn do-dma(&mut self , port: Port) {
// DMA transfer has been started, for now let s
// process everything in one pass (i.e. no
// chopping or priority handling)

match self.dma.channel(port).sync() {
Sync:: LinkedList => self.do_dma_linked_list (port) ,
_ => self.do_dma_block (port),

}

/// Emulate DMA transfer for linked list synchronization mode.
fn do_dma_linked_list(&mut self, port: Port) {
let channel = self.dma.channel_mut(port);

let mut addr = channel.base() & O0x1ffffc;

if channel.direction () = Direction :: ToRam {
panic!(”Invalid DMA_direction._for_linked._list .mode”);
}

// I don’t know if the DMA even supports linked list mode
// for anything besides the GPU
if port != Port::Gpu {
panic!(” Attempted._linked._list .DMA_on_port.{}”,
port as u8);

}

loop {
// In linked list mode, each entry starts with a

110

”header” word. The high byte contains the number
of words in the ”"packet” (not counting the header
word)

header = self .ram.load32 (addr);

mut remsz = header >> 24;

while remsz > 0 {

}

//
//

//
//

//
if

}

addr = (addr + 4) & Ox1ffffc;
let command = self.ram.load32 (addr);
println ! (?GPU_command._{:08x}”, command) ;

remsz —— 1;

The end—of—table marker is usually Oxffffff but
mednafen only checks for the MSB so maybe that’s
what

the hardware does? Since this bit is not part of any
valid address it makes some sense. 1’1l have to test
that at some point ...

header & 0x800000 != 0 {

break;

addr = header & Ox1ffffc;

}

channel

.done () ;

Since we haven’t implement the GPU yet I just display the command word
without further processing. We’ll have to hook our GPU rendering code here
when it’s done. Let’s get a bit further in our DMA implementation before we
start working on the GPU, don’t have anything interesting to display yet.

3.10 RAM to device GPU block copy

After this the BIOS wants to do an other DMA transfer from the RAM towards
the GPU but this time in Request synchronization mode. It probably wants to
load a texture. Adding support for this in our do_dma_block function is quite

trivial:

impl Interconnect {

/..

/// Emulate
/// modes.

DMA transfer for Manual and Request synchronization

fn do_-dma_block(&mut self , port: Port) {

/] ..

while remsz > 0 {

/]

match channel. direction () {

Direction ::FromRam => {
let src_.word = self.ram.load32(cur_addr);

111

match port {
Port::Gpu => println!(”GPU_data_{:08x}”,
src_word) ,
_ => panic!(”Unhandled DMA_destination._port

{7,
port as u8),
}
}
}
addr = addr.wrapping_add (increment);
remsz — 1;
}

channel.done();

We still can’t do much more than printing the raw GPU data but at least the
DMA part seems to work as intended. If we try to interpret the GPU commands
sent through the linked list we can guess what it’s doingjﬂ

e First it displays a black quadrilateral that takes the whole screen (command
0x28000000). It does this several times.

e Then it appears to load a texture (maybe the background with the text?)

e Then it draws the same quadrilateral again but with a dark-grey color
(command 0x28030303 where 0x030303 is a 24bit BGR colour)

e Then it draws it again repetedly, slowly changing the colour to a lighter
grey, it looks like the “fade-in” effect at the very beginning of the boot
animation. (commands 0x28060606, 0x28090909 etc... to 0x28b4b4db4)

e Then it adds three more draw commands: 0x380000b2 which draws a
shaded quadrilateral and two 0x300000b2 commands which draw shaded
triangles.

Then a little while after that we stumble upon an unhandled store8 at
address 0x1£801800 which is a CDROM drive register. I'm pleased we managed
to get to that point with our bare bones emulator. We don’t even support
interrupts!

But before we look at this CDROM business it’s tempting to try to implement
a basic GPU and display our first frames. After all it seems that our emulator
manages to go through the entire first boot logo. It’ll be more rewarding to see
that than the hexadecimal debug dumps we’ve become accustomed to and it’ll
validate that our CPU is working correctly.

4 The GPU: Internal state and first commands

We're finally getting to the fun part: drawing on the screen. The objective of
this part in twofold:

30111 describe those GPU instructions in greater details later when we’ll implement them.

112

o We want to create a reasonably accurate internal representation of the PSX
GPU. Mainly we want to update the register values to reflect the current
GPU state instead of our current hardcoded values. This will layout a
basic GPU state machine that we’ll improve later when we’ll implement
video timings, interrupts and other delicacies.

e We'll also implement a very simple and innacurate OpenGL renderer.
That’ll give us the opportunity to implement some of the very boring low
level OpenGL boilerplate and we’ll have some visual feedback for debugging
the rest of the emulator.

In order to do this we’ll start back from the beginning, review all the GPU
register accesses (both from the CPU and DMA) and attempt to implement
them as best as we can.

4.1 GPUSTAT register

The GPU only has a single status register but it’s packed full of miscelaneous
information about the GPU state. It contains fields describing the texture
mapping config, the video mode, the various “ready” bits for the command
FIFOs, the color mode etc. ..

We can start by declaring the various variables holding all that state. In that
end I'm going to create a whole bunch of new types in order to manipulate nice
type-safe symbolic values instead of meaningless integers:

pub struct Gpu {
/// Texture page base X coordinate (4 bits, 64 byte increment)
page_base_x: u8,
/// Texture page base Y coordinate (1bit, 256 line increment)
page_base_y: u8,
/// Semi—transparency. Not entirely sure how to handle that
value
/// yet, it seems to describe how to blend the source and
/// destination colors.
semi_transparency: u8,
/// Texture page color depth
texture_depth: TextureDepth,
/// Enable dithering from 24 to 15bits RGB
dithering: bool,
/// Allow drawing to the display area
draw_to_display: bool,
/// Force 7"mask” bit of the pixel to 1 when writing to VRAM
/// (otherwise don’t modify it)
force_set_mask_bit: bool,
/// Don’t draw to pixels which have the ”"mask” bit set
preserve_masked_pixels: bool,
/// Currently displayed field. For progressive output this is
/// always Top.
field: Field,
/// When true all textures are disabled
texture_disable: bool,
/// Video output horizontal resolution
hres: HorizontalRes ,
/// Video output vertical resolution
vres: VerticalRes,
/// Video mode
vmode: VMode,
/// Display depth. The GPU itself always draws 15bit RGB, 24bit

113

/// output must use external assets (pre—rendered textures,
MDEC,

//] ete...)

display_depth: DisplayDepth,

/// Output interlaced video signal instead of progressive

interlaced: bool,

/// Disable the display

display_-disabled: bool,

/// True when the interrupt is active

interrupt: bool,

/// DMA request direction

dma_direction: DmaDirection,

}

/// Depth of the pixel values in a texture page
#[derive (Copy)]
enum TextureDepth {

/// 4 bits per pixel

T4Bit = 0,
/// 8 bits per pixel
T8Bit = 1,
/// 15 bits per pixel
T15Bit = 2,

}

/// Interlaced output splits each frame in two fields
#[derive (Copy)]
enum Field {

/// Top field (odd lines).

Top = 1,
/// Bottom field (even lines)
Bottom = 0,

}

/// Video output horizontal resolution

#[derive (Copy)]
struct HorizontalRes (u8);

impl HorizontalRes {
/// Create a new HorizontalRes instance from the 2 bit field
hrl*
/// and the one bit field ‘hr2¢
fn from_fields (hrl: u8, hr2: u8) —> HorizontalRes {
let hr = (hr2 & 1) | ((hrl & 3) << 1);

¢

HorizontalRes (hr)

}

/// Retrieve value of bits [18:16] of the status register
fn into_status(self) —> u32 {
let HorizontalRes(hr) = self;

(hr as u32) << 16

}

/// Video output vertical resolution

#[derive (Copy)]
enum VerticalRes {
/// 240 lines
Y240Lines = 0,
/// 480 lines (only available for interlaced output)

114

Y480Lines = 1,
}

/// Video Modes
#[derive (Copy)]
enum VMode {

/// NTSC: 480i60H

Ntsc = 0,
/// PAL: 576i50Hz
Pal =1,

}

/// Display area color depth
#[derive (Copy)]
enum DisplayDepth {

/// 15 bits per pixel

D15Bits = 0,
/// 24 bits per pixel
D24Bits = 1,

}

/// Requested DMA direction .
#[derive (Copy)]
enum DmaDirection {

Off = 0,

Fifo = 1,

CpuToGp0 = 2,

VRamToCpu = 3,

This is basically a direct translation of the GPUSTAT register fields. I must
say that at that point I don’t fully understand all of those variables and it’s
possible that we’ll have to change this implementation or maybe simply rename
some of them. It does however give us a foretaste of the various features/quirks
of the Playstation GPU that we’ll have to implement eventually if we want to
make an accurate renderer. If some of those variables mean nothing to you don’t
worry, we'll review them all when we actually need them.

I’'m not entirely sure what’s the GPU state at reset but I think the BIOS
will reconfigure everything anyway. Let’s assume that all the values are 0 on
reset, except for the display_disabled field:

impl Gpu {
pub fn new() — Gpu {
Gpu {

page_base_x: 0,
page_base_y: O,
semi_transparency: O,

texture_depth: TextureDepth:: T4Bit,

dithering: false ,
draw_to_display: false ,

force_set_mask_bit: false ,

preserve_masked_pixels:
field: Field::Top,
texture_disable: false ,

hres: HorizontalRes:: from_fields (0, 0),
vres: VerticalRes:: Y240Lines,

vmode: VMode:: Ntsc,

display_depth: DisplayDepth:: D15Bits,

interlaced: false ,
display_disabled: true,
interrupt: false ,

115

dma_direction: DmaDirection:: Off

For the time being we can implement the GPUSTAT register read. It’s a
read-only register since writes to the GPUSTAT register address end up in the
GP1 register. We’ll see how the GPU config is modified in a minute.

impl Gpu {

/!

/// Retrieve value of the status register
pub fn status(&self) —> u32 {
let mut r = 0u32;

(self.page_base_x as u32) << 0;
(self.page_base_y as u32) << 4;
(self.semi_transparency as u32) << 5;
(self.texture_-depth as u32) << 7;
(self.dithering as u32) << 9;
(self.draw_to_display as u32) << 10;
(self.force_set_mask_bit as u32) << 11;
(self.preserve_masked_pixels as u32) << 12;
(self.field as u32) << 13;

it 14: not supported
(self.texture_disable as u32) << 15;
self.hres.into_status();

(self.vres as u32) << 19;

(self.vmode as u32) << 20;
(self.display_-depth as u32) << 21;
(self.interlaced as u32) << 22;
(self.display_disabled as u32) << 23;
(self.interrupt as u32) << 24;

L ~ LA L T o A T T

/

e T T R R T N T T T I e S T B I

// For now we pretend that the GPU is always ready:
// Ready to receive command

r|= 1 << 26;

// Ready to send VRAM to CPU

roj= 1 << 27;

// Ready to receive DMA block

r|= 1 << 28;

r |= (self.dma_direction as u32) << 29;

// Bit 31 should change depending on the currently drawn
// line (whether it’s even, odd or in the vblack

// apparently). Let’s not bother with it for now.

r|= 0 << 31;

// Not sure about that, I’m guessing that it’s the signal
// checked by the DMA in when sending data in Request
// synchronization mode. For now I blindly follow the
// Nocash spec.
let dma_request =
match self.dma_direction {
// Always 0
DmaDirection :: Off => 0,
// Should be 0 if FIFO is full, 1 otherwise
DmaDirection :: Fifo = 1,
// Should be the same as status bit 28
DmaDirection : : CpuToGp0 => (r >> 28) & 1,
// Should be the same as status bit 27

116

DmaDirection : : VRamToCpu => (r >> 27) & 1,
b

r |= dma.request << 25;

r

You can see that I don’t support bit 14: the Nocash spec says that when this
bit is set on the real hardware just messes up the display in a weird way. We
can probably assume that it’s not a commonly used feature for the moment.

As before I hardcode the “ready” bits to 1 since we have a long way to go
before we have the necessary infrastructure to emulate them accurately. We’ll
need to emulate the various internal FIFOs and the rate at which they empty
for instance. That will come later.

In general I'm not entirely sure how the DMA state machine synchronizes
with the GPU. We'll have to hope it’s not too critical for now. As we progress if
we start to notice that our emulator seems to misbehave because of a broken
GPU DMA we’ll have to investigate further.

4.2 GPO Dram Mode Setting command

All the GPU configuration and draw commands are transferred through two
registers: GP0 and GP1. GPO is used to send drawing commands (lines, triangles,
quadrilaterals with various attributes) and to copy data between the VRAM
(the video RAM dedicated to the GPU) and the CPU/DMA.

We'll have to decode those command like we decoded the CPU instructions.
The format is pretty simple: the most significant byte is the “opcode” and the
rest are parameters whose meaning depends on the opcode. The only difficulty
is that GP0 commands can take a variable amount of parameters and therefore
fit in multiple words.

The first command sent by the BIOS into GPO is 0xe1003000. The high
byte is Oxel which is the “Draw Mode setting” command. It sets a bunch
of texture-related values (dithering, texture depth, texture disable, etc...)
and two new fields we haven’t already encountered in the GPUSTAT register:
rectangle _texture x _flip and rectangle texture_y flip. They're used to
mirror a textured rectangle horizontally or vertically:
pub struct Gpu {

//

/// Mirror textured rectangles along the x axis
rectangle_texture_x_flip: bool,
/// Mirror textured rectangles along the y axis
rectangle_texture_y_flip: bool,

}

impl Gpu {

/// Handle writes to the GPO command register
pub fn gpO(&mut self, val: u32) {
let opcode = (val >> 24) & O0xff;

match opcode {

117

Oxel => self.gp0_draw_mode(val),
=> panic!(” Unhandled .GPO_command._{:08x}”, val),

}

/// GPO(0xE1) command

fn gpO.-draw_mode(&mut self , val: u32) {
self.page_base.x = (val & 0xf) as u8;
self.page_base.y = ((val >> 4) & 1) as u8;
self.semi_transparency = ((val >> 5) & 3) as u8;

self.texture_depth =
match (val >> 7) & 3 {
0 => TextureDepth :: T4Bit,
1 => TextureDepth :: T8Bit,
2 => TextureDepth:: T15Bit,
n => panic!(”Unhandled_texture_depth_{}”, n),

b
self . dithering = ((val >> 9) & 1) != 0;
self.draw_to_display = ((val >> 10) & 1) != 0;
self.texture_disable = ((val >> 11) & 1) != 0;
self . rectangle_texture_x_flip = ((val >> 12) & 1) != 0;
self.rectangle_texture_y_flip = ((val >> 13) & 1) != 0;

We can now call our new gp0 method from the interconnect:

impl Interconnect {

/] ...

/// Store 32bit word ‘val‘ into ‘addr‘
pub fn store32(&mut self, addr: u32, val: u32) {
/]

if let Some(offset) = map::GPU.contains (abs_addr) {
match offset {
0 => self.gpu.gp0O(val),
- => panic!("GPU_write_{}:.{:08x}”, offset, val),

}

return ;

4.3 GPO NOP command

The next GP0 command sent by the BIOS is ‘0x0007920c‘. Apparently opcode
‘0x00° is a NOP so I'm not sure what’s the meaning of the ‘0x7920c* given
as parameter@ Maybe it’s just a garbage value. Let’s ignore it for now and
implement the NOP:

impl Gpu {

/!

311've tried quickly disassembling the surrounding code but I couldn’t really figure out what
it’s trying to do. I'll have to take the time to dig deeper at some point. ..

118

/// Handle writes to the GP0 command register
pub fn gp0(&mut self, val: u32) {
let opcode = (val >> 24) & 0xff;

match opcode {
0x00 => (), // NOP
Oxel => self.gp0O_draw_mode(val),
_ => panic!(” Unhandled _.GPO_opcode_{:08x}”, wval),

4.4 GP1 Soft Reset command

After that the BIOS writes 0x00000000 to GP1 this time. The command format
is the same: the high byte is the opcode while the low 24bits contain the
parameters. However GP1 has a different set of commands mostly used to
configure the display and the DMA. GP1 commands are always one word in
length.

GP1 opcode 0x00 is a software reset command, it resets the GPU to a default
configuration. It reconfigures most of the fields we’ve already encountered and a
few more:

pub struct Gpu {

/// Texture window x mask (8 pixel steps)
texture_window_x_mask: u8,

/// Texture window y mask (8 pixel steps)
texture_window_y_mask: u8,

/// Texture window x offset (8 pixel steps)
texture_window_x_offset: u8,

/// Texture window y offset (8 pixel steps)
texture_window_y_offset: u8,

/// Left—most column of drawing area
drawing_area_left: ul6,

/// Top—most line of drawing area
drawing_area_top: ul6,

/// Right—most column of drawing area
drawing_area_right: ul6,

/// Bottom—most line of drawing area
drawing_area_bottom: ul6,

/// Horizontal drawing offset applied to all vertex
drawing_x_offset: 116 ,

/// Vertical drawing offset applied to all vertex
drawing_y_offset: 116 ,

/// First column of the display area in VRAM
display_vram_x_start: ul6,

/// First line of the display area in VRAM
display_vram_y_start: ul6,

/// Display output horizontal start relative to HSYNC
display_horiz_start: ul6,

/// Display output horizontal end relative to HSYNC
display_horiz_end: ul6,

/// Display output first line relative to VSYNC
display_-line_start: ul6,

/// Display output last line relative to VSYNC
display_line_end: ul6,

119

I tried to get the reset value from my console, unfortunately some of the
values like display horiz_* and display_line_* cannot be read directly from
any register as far as I can tell so I'm going to use the values given by the NoCash
specs instead.
impl Gpu {

/!

/// Handle writes to the GPl command register
pub fn gpl(&mut self, val: u32) {
let opcode = (val >> 24) & 0xff;

match opcode {
0x00 => self.gpl_reset(val),
_ => panic!(”Unhandled _GPl_command._{:08x}”, wval),

}

}

/// GP1(0x00): soft reset

fn gpl_reset(&mut self, _: u32) {
self.interrupt = false;

self.page_base_.x = 0;

self.page_base.y = 0;
self.semi_transparency = 0;
self.texture_.depth = TextureDepth:: T4Bit;
self.texture_window_x_mask = 0;
self.texture_window_y_mask = 0;
self.texture_.window_x_offset =
self.texture_window_y_offset =
self.dithering = false;
self.draw_to_display = false;
self.texture_disable = false;
self.rectangle_texture_x_flip = false;
self .rectangle_texture_y_flip false;
self.drawing_area_left = 0;

self .drawing_area_top = 0;
self.drawing_area_right = 0;

self .drawing_area_bottom = 0;
self.drawing_x_offset = 0;
self.drawing_y_offset = 0;
self.force_set_mask_bit = false;
self.preserve_masked_pixels = false;

03
0;

self.dma_direction = DmaDirection:: Off;

self.display_disabled = true;
self.display_vram_x_start = 0;
self.display_vram_y_start = 0;

self.hres = HorizontalRes:: from_fields (0, 0);
self.vres = VerticalRes:: Y240Lines;

self.vmode = VMode:: Ntsc;

self.interlaced = true;
self.display_horiz_start = 0x200;
self.display_horiz_end = 0xc00;
self.display_line_start = 0x10;
self.display_line_end = 0x100;
self.display_depth = DisplayDepth:: D15Bits;

// XXX should also clear the command FIFO when we implement
it

120

// XXX should also invalidate GPU cache if we ever
implement it

The reset command is supposed to flush the command FIFO and the texture
cache but we don’t emulate those yet so I just added a note to remember to
modify the function when we add support for one of those.

The texture_window_* parameters are used to crop a texture. The drawing_area_*
parameters are used to describe a drawing window, the GPU won’t draw anything
outside of this area.

The drawing offset_* parameters are a constant offset that’s added to all
the vertex. It lets you translate a scene in VRAM without having to recompute
all the coordinates on the CPU.

The display_vram *, display_horiz_* and display_line_ parameters are
used to describe which portion of the VRAM are drawn on the screen. If you're
not familiar with the wonderful world of analog video it might not be immediately
obvious what those parameters do so let me give a quick overview of the GPU’s
video output.

4.5 The GPU renderer and the video output

You can think of the Playstation GPU as two different modules operating
asynchronously. First you have t he renderer which take the draw commands
(through GPO0) and rasterizes/ them into the dedicated video memory used by
the GPU: the VRAM.

The VRAM is organized as a two dimensional byte array whose dimensions
are 2048x512, giving a grand total of 1MB of video memory. This VRAM is
used to store the image generated by the GPU’s rasterizer (i.e. the framebuffer)
but also any texture used to render the scene. The GPU has no direct access
to the main RAM, much less the CDROM: all the assets have to be copied in
VRAM by the CPU or DMA before the rendering can take place.

Once the renderer has completed a scene it ends up somewhere in the VRAM.
Now it has to be displayed on the TV screen. That’s where the GPU’s video
output is used.

The video output (when enabled) sends the video signal continuously at 60
NTSC| or 50 PAL frames per second. It never stops because doing so would
cause a glitch on the screen. Consider the |[CRT) displays everybody used in the
nineties: you have an electron beam sweeping the screen line by line, you can’t
jump to any random position of the screen when you want. Even on modern
LCD screens most video interfaces (VGA, DVI, HDMI, LVDS, MIPI....) behave
in the same way.

That means that when the game wants to draw a triangle on the screen it
doesn’t directly send the triangle to the TV, rather it renders it in the framebuffer
and the video output will send it to the screen during its next pass.

For the time being we won’t bother emulating the video output, we can
directly display the contents of the framebuffer. It’s not accurate but it’s simpler
and we should be able to plug our video output emulation layer on top of it
when we’re ready to implement it.

121

https://en.wikipedia.org/wiki/Rasterisation
https://en.wikipedia.org/wiki/Framebuffer
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/Cathode_ray_tube

4.6 GPUREAD register placeholder

After those commands the BIOS reads from the register at offset 0 in the GPU
(the same address where GP0O commands are written). This register is GPUREAD
and is used to retrieve data generated by certain commands, typically to read
parts of the framebuffer back in RAM. The problem is that so far no such
command has been issued so I’'m not sure why the BIOS attempts to read from
there. For now let’s return 0 and we’ll implement it properly later:

impl Gpu {
/.
/// Retrieve value of the "read” register

pub fn read(&self) —> u32 {
// Not implemented for now...
0

4.7 GP1 Display Mode command

The BIOS goes on by sending command 0x08000000 in GP1. Opcode 0x08
sets the display mode: video mode, screen resolution, interlacing etc... It also
sets that weird field which we encountered as bit 14 of GPUSTAT: the one who
appears to mess up the video output. I’'m going to assume this field is useless so
I'm just going to crash if it’s set, this way if one game relies on it we're sure to
catch it:

impl Gpu {
/...

/// GP1(0x80): Display Mode

fn gpl_display_-mode(&mut self , val: u32) {
let hrl = (val & 3) as u8;
let hr2 = ((val >> 6) & 1) as u8;

self.hres = HorizontalRes:: from_fields (hrl, hr2);

self.vres = match val & 0x4 != 0 {
false => VerticalRes :: Y240Lines,
true => VerticalRes::Y480Lines,

s

self.vmode = match val & 0x8 != 0 {
false => VMode:: Ntsc,
true => VMode:: Pal,

s

self.display_depth = match val & 0x10 != 0 {
false => DisplayDepth:: D24Bits,
true => DisplayDepth:: D15Bits,

}s

self.interlaced = val & 0x20 != 0;

if val & 0x80 != 0 {
panic!(” Unsupported_display .mode.{:08x}”, val);

122

4.8 GP1 DMA direction command

After that the BIOS issues the GP1 command 0x04000000. Opcode 0x04 simply
sets the DMA direction (to 0ff in this case):
impl Gpu {

//

/// GP1(0x04): DMA Direction
fn gpl-dma_direction(&mut self, val: u32) {
self.dma_direction =
match val & 3 {
0 => DmaDirection :: Off |
1 => DmaDirection :: Fifo ,
2 => DmaDirection :: CpuToGp0,
3 => DmaDirection :: VRamToCpu,
_ => unreachable!(),

4.9 DMA GPO commands

After that the CPU issues an other “DMA Direction” command to set it to value
2 (CpuToGp0). After that the BIOS starts sending the Linked List commands
using the DMA. Those commands are always sent to GP0 so we can update our
linked list DMA routine to call the gp0 method of our GPU:

impl Gpu {

/// Emulate DMA transfer for linked list synchronization mode.
fn do_dma_linked_list(&mut self, port: Port) {

/..
loop {
while remsz > 0 {
addr = (addr + 4) & Ox1ffffc;
let command = self.ram.load32 (addr);
// Send command to the GPU
self.gpu.gp0(command) ;
remsz —— 1;
}
/e
}

4.10 GPO Set Drawing Area commands

The first command sent through the linked list is 0xe3000400 which sets the
top-left corner of the drawing area. When the GPU renderer draws to the

123

framebuffer it won’t write anything outside of the drawing area even if a draw
command clips outside.

impl Gpu {

/// GPO(OxE3): Set Drawing Area top left

fn gpO-drawing_area_top_left(&mut self, val: u32) {
self.drawing_area_top = ((val >> 10) & 0x3ff) as ul6;
self.drawing_area_left = (val & 0x3ff) as ul6;

You see that the drawing area_top value can range from 0 to 1023. It’s
strange because the GPU VRAM only has 512 lines so anything beyond that
value won’t be rendered. The horizontal coordinate, drawing area_left, has
the same resolution but this one is normal: the VRAM has 2048 bytes per lines
but since the GPU draws 16 bits per pixel (15bit RGB + mask bit) you can only
fit 1024 pixels per VRAM line.

Unsuprisingly the next command is 0xe403c27f which sets the bottom-right
corner of the drawing area, the parameter packing is the same:
impl Gpu {

/!

/// GPO(OxE4): Set Drawing Area bottom right

fn gpO.drawing_area_bottom_right(&mut self , val: u32) {
self.drawing_area_bottom = ((val >> 10) & 0x3ff) as ul6;
self.drawing_area_right = (val & 0x3ff) as ul6;

After those two commands the top-left corder is at [0, 1] while the bottom-
right is at [639, 240]. The coordinates are inclusive so the drawing area resolution
is 640x240 which looks like a standard NTSC field resolution.

4.11 GPO Set Drawing Offset command

The BIOS continues setting the drawing area with command 0xe5000800 which
sets the drawing offset. We have to be careful with that one because the x and y
parameters are 11 bit signed two’s complement values. It means that the GPU
can handle negative offsets. We need to mess with a few bit shifts to get the
correct sign extension for negative value@
impl Gpu {

/] ...

/// GPO(0xE5): Set Drawing Offset

fn gpO_-drawing_offset(&mut self , val: u32) {

let x = (val & 0x7ff) as ul6;
let y = ((val >> 11) & 0x7ff) as ul6;

// Values are 11bit two’s complement signed values, we need
to

// shift the value to 16bits to force sign extension

self.drawing_x_offset ((x << 5) as i16) >> 5;

self.drawing_y_offset ((y << 5) as i16) >> 5;

32The reason is that Rust obviously doesn’t have a 11bit signed integer type so we have to
shift to 16bits in order to get the correct sign in an 116, then we can shift back to 11bits.

124

}

This particular command sets the offset to [0, 1] which matches the drawing
area top-left corner so everything is coherent so far. I'm not sure why the BIOS
doesn’t start at [0, 0] but I guess wasting one line doesn’t matter much for
displaying the boot logo.

4.12 GPO Texture Window command

After that we have yet another GPU config command: 0xe2000000 which
configures the texture window parameters:

impl Gpu {
/]

/// GPO(0xE2): Set Texture Window

fn gpO_texture_window(&mut self , val: u32) {
self.texture_window_x_mask = (val & 0x1f) as u8;
self . texture_.window_y_mask = ((val >> 5) & 0x1f) as u8;
self.texture_window_x_offset = ((val >> 10) & 0x1f) as u8;
self.texture_window_y_offset = ((val >> 15) & 0x1f) as u8;

4.13 GPO Mask Bit Setting command

The BIOS continues with the last GP0 rendering attribute command: e6000000°
which sets the mask bit-related parameters:

impl Gpu {

/!

/// GPO(OxXE6): Set Mask Bit Setting

fn gpO_mask_bit_setting(&mut self , val: u32) {
self.force_set_mask_bit = (val & 1) != 0;
self . preserve_masked_pixels = (val & 2) != 0;

The mask bit behaves a bit like OpenGL’s stencil masks, it prevents the
GPU from overwriting a pixel if its mask bit is set and masking is enabled.

4.14 GP1 Display VRAM Start command

The BIOS then configures the video output through the GP1 register. It starts
with 0x0503c400 which sets the display start address in VRAM.

Note that the LSB of the horizontal coordinate is ignored. It means that
we're always aligned to a 16bit pixel.

impl Gpu {

/// GP1(0x05): Display VRAM Start

fn gpl_display_vram_start(&mut self, val: u32) {
self.display_vram_x_start = (val & 0x3fe) as ul6;
self . display_vram_y_start = ((val >> 10) & O0x1ff) as ul6;

125

The current command sets the start coordinates to [0, 241] which is immedi-
ately below the drawing area we configured before. I assume it’s because the
BIOS will use a form of double buffering and won’t draw directly to the displayed
area.

4.15 GP1 Display Range commands

After the display VRAM start address the BIOS configures the video output
timings with commands 0x06c60260 and 0x0703fc10 which respectively set the
display’s horizontal and vertical rangﬂ
impl Gpu {

/] ...

/// GP1(0x06): Display Horizontal Range

fn gpl_display_-horizontal_range(&mut self , val: u32) {
self.display_horiz_start = (val & Oxfff) as ul6;
self.display_horiz_end = ((val >> 12) & 0xfff) as ul6;

}

/// GP1(0x07): Display Vertical Range

fn gpl_display.vertical_range(&mut self, val: u32) {
self.display_-line_start (val & 0x3ff) as ul6;
self.display_line_end ((val >> 10) & 0x3ff) as ul6;

Note that those commands use a different packing format for their parameters.

4.16 GPO Monochrome Quadrilateral command

We're finally getting to the interesting part: the first draw command. The
BIOS sends a linked list to the GPU containing command 0x28000000. GPO
opcode 0x28 draws a monochrome quadrilateral. The low 3bytes of the command
contain the 24bit BGR color of the polygon (black in this case).

There’s a problem however: this command takes 4 additional words as argu-
ment containing the coordinates of the 4 vertex/ needed to draw a quadrilateral.
So far we’ve only implemented single-word GP0O commands so we’ll have to
improve our code a little.

To simplify our task I'm going to start with a simple container that will
accumulate the words for the current command:

/// Buffer holding multi—word fixed —length GPO command parameters
struct CommandBuffer {
/// Command buffer: the longuest possible command is GPO(0x3E)
/// which takes 12 parameters
buffer: [u32; 12],
/// Number of words queued in buffer
len: u8,

}

impl CommandBuffer {
fn new() —> CommandBuffer {
CommandBuffer {
buffer: [0; 12],

33Those coordinates are not in VRAM but rather in the output’s video signal system of
coordinates.

126

https://en.wikipedia.org/wiki/Vertex_%28geometry%29

len: 0,

}

/// Clear the command buffer
fn clear(&mut self) {
self.len = 0;

}

fn push_word(&mut self , word: u32) {
self.buffer[self.len as usize] = word;
self.len 4= 1;

}

}

impl ::std::ops::Index<usize> for CommandBuffer {
type Output = u32;

fn index<’a>(&’a self, index: usize) —> &’a u32 {
if index >= self.len as usize {
panic!(”Command_buffer_index_out_of_range:_{}-({})”,
index, self.len);

}
&self . buffer [index|

It’s just a glorified array which can contain up to 12 words and keeps the
count of how many words have been pushed into it. The std::ops::Index
mumbo jumbo just overloads the [] operator to let us access CommandBuffer
elements like a regular array.

We can add an instance of this CommandBuffer to our GPU state and we’ll
also add a counter of the number of remaining parameters and a function pointer
to the method which implements the command (it will save us having to match
the opcode twice):
pub struct Gpu {

//

/// Buffer containing the current GP0 command

gp0_command: CommandBuffer ,

/// Remaining words for the current GPO command
gpO_command._remaining: u32,

/// Pointer to the method implementing the current GP) command
gpO0_command_-method: fn(&mut Gpu) ,

We can now modify our GPO register handler to use this new infrastructure:

impl Gpu {
/] ...

/// Handle writes to the GP0 command register
pub fn gpO(&mut self, val: u32) {
if self.gpO_.command_remaining = 0 {
// We start a new GPO command
let opcode = (val >> 24) & 0Oxff;

let (len, method) =
match opcode {

127

(1, Gpu::gpO_nop
as fn(&mut Gpu)),

(5, Gpu::gp0O_quad-mono_opaque
as fn(&mut Gpu)),

(1, Gpu::gp0_-draw_mode
as fn(&mut Gpu)),

(1, Gpu::gpO_texture_window
as fn(&mut Gpu)),

(1, Gpu:: gpO_drawing_area_top_left
as fn(&mut Gpu)),

(1, Gpu::gp0O_drawing_area_bottom_right
as fn(&mut Gpu)),

(1, Gpu:: gp0_drawing_offset
as fn(&mut Gpu)),

(1, Gpu:: gp0_mask_bit_setting
as fn(&mut Gpu)),
_ => panic!(” Unhandled .GPO_command._{:08x}” ,
val),

s

self.gpO_.command_remaining = len;
self.gp0_command_method = method;

self.gpO0_command. clear () ;

}

self.gpO_command . push_word(val);
self.gpO0_command_remaining —= 1;

if self.gp0_.command_remaining = 0 {
// We have all the parameters, we can run the command
(self.gpO0_command_-method) (self);

}

/// GP0(0x00): No Operation
fn gpO_nop(&mut self) {

// NOP
}

We're still missing the implementation of the gp0_quad_mono_opaque function
that’s supposed to render the primitive in the framebuffer. We could start
drawing to the screen right away but since we only have a black rectangle so far
it wouldn’t be very interesting. Let’s put a placeholder for now and continue a
little further before we fire up OpenGL:
impl Gpu {

/!

/// GP0(0x28): Monochrome Opaque Quadrilateral
fn gpO_quad_mono_opaque(&mut self) {
println!(”Draw_quad”);

128

1}

4.17 Interleaved video deadlock workaround

Unfortunately when we attempt to continue the execution to get to the next
GPU commands we enter an infinite loop in the BIOS. That’s weird, especially
since we got way past that point before we started implementing the GPU.

If we disassemble the code at the deadlock location we discover that the
BIOS is apparently waiting for bit 31 of the GPUSTAT register to change. This
bit is supposed to alternate between odd and even lines when the output is
interlaced)). But we haven’t implemented this bit yet.

So why did it work before? After some testing it turns out it’s because this
particular piece of code is only entered when GPUSTAT retuns bit 19 set, i.e.
when the vertical resolution is set to 480 lines. Paradoxically by implementing
the GPUSTAT register and improving the accuracy of our emulator we caused a
regression.

I’'m not entirely sure what this particular piece of BIOS code does to be
honest, to figure it out I'd have to disassemble a bigger chunk of surrounding
code to figure out what it’s trying to do and I don’t want to go down this rabbit
hole at that point. I'd rather implement bit 31 of GPUSTAT correctly but in
order to do that we need accurate GPU timings and we don’t have that yet.

In that light and in order to keep us moving we’re going to use a temporary
hack: in the GPUSTAT register we’re going to return 0 in bit 19 no matter what.
It’s not accurate but it will side step that problemetic piece of code. When we
implement GPU timings and emulate bit 31 correctly we’ll revert that change:
impl Gpu {

/// Retrieve value of the status register
pub fn status(&self) — u32 {
let mut r = 0u32;

/] ...

r |= self.hres.into_status();

// XXX Temporary hack: if we don’t emulate bit 31 correctly
// setting ‘vres‘ to 1 locks the BIOS:

// t |= (self.vres as u32) << 19;

r |= (self.vmode as u32) << 20;

This is not very satisfactory of course but that should allow us to keep going
with our first GPU implementation. Soon after that we’ll start working on
accurate timings and we’ll be able to emulate bit 31 properly.

4.18 GPO Clear Cache command

We can now resume the BIOS execution and we reach a new GP0 command:
0x01000000. This command is used to clear the internal texture cache. Since we
don’t implement a texture cache yet we can just ignore this command for now:

impl Gpu {

129

https://en.wikipedia.org/wiki/Interlaced_video

/// GP0(0x01): Clear Cache

fn gpO.clear_cache(&mut self) {
// Not implemented

}

4.19 GPO Load Image command

Next we have GP0O command 0xa0000000 which is used to load an image into
the GPU’s VRAM using the CPU or the DMA. This is how a program can load
a texture or a palette into the GPU’s dedicated memory.

The command takes two additional word parameters: the first one contains
the coordinates of the top-left corner of target rectangle in the VRAM. The 2nd
one contains the resolution of the image (width/heigh) in pixels. The GPU then
expects the pixel data on the same GPO port.

Since the GPU uses 16bits pixels and the CPU/DMA send 32bits at a time
to the GPO port an additional 16bits of padding must be added in the total
number of pixels is odd.

Since this command is immediately followed by the image data the total
amount of data transfered can be quite big, storing all of it in our gp0_command
buffer to copy it all in the VRAM afterwards would be wasteful. Instead we are
going to special case image transfer to store the data directly inside the VRAM.

I add a new variable in the GPU state holding the current mode of the GP0
port:
pub struct Gpu {

/!

/// Current mode of the GP0O register
gp0_mode: GpOMode,

impl Gpu {
pub fn new() — Gpu {
Gpu {
/...
gpO0_mode: GpOMode : : Command,
}
}
/...
}

/// Possible states for the GP0O command register
enum GpOMode {
/// Default mode: handling commands
Command,
/// Loading an image into VRAM
Imageload ,

I also renamed gpO_command remaining into gpO_words_remaining since it
will also count the remaining number of image words to load.
We can then tweak the gpO method to handle this new mode:

130

impl Gpu {

/// Handle writes to the GPO command register
pub fn gpO(&mut self, val: u32) {
if self.gpO_words_remaining = 0 {
// We start a new GPO command
let opcode = (val >> 24) & 0xff;

let (len, method) =
match opcode {

Oxal =>
(3, Gpu::gp0O_image_load as fn(&mut Gpu)),
/..
s
self.gpO0_words_remaining = len;

self.gpO_command_method = method;

self.gpO_command. clear () ;

}

self.gpO0_words_remaining —= 1;

match self.gpO_mode {
GpOMode : : Command => {
self .gpO0_-command. push_word(val);

if self.gpO_words_remaining =— 0 {
// We have all the parameters, we can run
// the command
(self.gp0_command_-method) (self);

}

}
GpOMode : : ImageLoad => {
// XXX Should copy pixel data to VRAM

if self.gpO_words_remaining = 0 {
// Load done, switch back to command mode
self.gp0_mode = GpOMode : : Command;

I added the gp0_image_load command which I consider to be 3 words long.
The method uses those parameters to compute the number of words we must
expect as part of the image data and puts it back in gp0_words_remaining while
switching gp0_mode to ImageLoad:

impl Gpu {
/] ...

/// GPO(0XAO0): Image Load

fn gpO_image_load(&mut self) {
// Parameter 2 contains the image resolution
let res = self.gpO_command[2];

let width = res & Oxffff;
let height = res >> 16;

131

// Size of the image in 16bit pixels
let imgsize = width % height;

// If we have an odd number of pixels we must round up
// since we transfer 32bits at a time. There’1l be 16bits
// of padding in the last word.

let imgsize = (imgsize + 1) & !1;

// Store number of words expected for this image
self.gpO_words_remaining = imgsize / 2;

// Put the GPO state machine in ImageLoad mode
self.gp0_mode = GpOMode:: ImageLoad;

Of course in my gpO implementation above I don’t actually do anything with
the image data. When we add support for the VRAM emulation we should copy
the image data at the right location (given by the first command parameter) but
there’s no reason to bother with that at that point.

4.20 DMA image transfer

The BIOS doesn’t send the image data in a linked list like other GP0 commands,
instead it uses a regular “block” DMA transfer so we need to plug our gpO
method in it:

impl Interconnect {

/] ...

/// Emulate DMA transfer for Manual and Request synchronization
/// modes.
fn do_dma_block(&mut self , port: Port) {

/..
while remsz > 0 {
/.
match channel.direction () {
Direction ::FromRam => {
let src_.word = self.ram.load32(cur_addr);
match port {
Port ::Gpu => self.gpu.gp0O(src_word),
- =
panic!(” Unhandled DMA_destination._port_{}”,
port as u8),
}
}
}
}

Our emulator now loads textures to the GPU and then discards them imme-
diately. Beautiful.

132

4.21 GP1 Display Enable command

After that the bios issues GP1 command 0x03000000 which is used to set the
value of of our display_disabled field:
impl Gpu {

//

/// GP1(0x03): Display Enable

fn gpl_display_enable(&mut self, val: u32) {
self . display_-disabled = val & 1 != 0;

}

In this case it sets it to 0, effectively enabling the display.

4.22 GPO Image Store command

Then the BIOS does something quite perplexing: it issues a 0xc0000000 com-
mand on GPO which is used to copy data from the VRAM to the CPU/DMA.
The parameters are the same as the “Load Image” command but this time it’s
the GPU providing the pixel data through the GPUREAD register. The CPU
(or DMA) can then read the data 32bits at a time by reading this register until
all the image has been transfered.

I find it perplexing because I can’t imagine what the BIOS is trying to do
here. Since it hasn’t rendered anything worthwhile yet it doesn’t have anything
interesting to recover. Maybe it’s part of a self-test of some sort.

We could try to figure it out by disassembling the code that calls this
command but I don’t want to bother with that. I'm just going to foolishly ignore
it for now. Whatever this code is doing doesn’t seem to prevent the BIOS from
continuing its execution normally (it gets through the boot animation and starts
probing the CDROM). So let’s use a placeholder implementation for now:
impl Gpu {

/] ...

/// GP0(0xCO): Image Store

fn gpO_-image_store(&mut self) {
// Parameter 2 contains the image resolution
let res = self.gpO_command[2];

let width = res & Oxffff;
let height = res >> 16;

println!(”Unhandled_.image_store:_{}x{}”, width, height);

We don’t have to do anything more: after this command the BIOS will expect
the image data to be available through the GPUREAD register. Right now our
implementation of this register always returns 0 so it will read that as many
times as it wants.

4.23 GPO Shaded Quadrilateral command

At long last we're reaching the interesting part! The BIOS is starting to draw
the boot animation with the “Sony Computer Entertainment” logo. We're only

133

missing a few commands before we can proceed to implement the OpenGL
renderer itself.

The first one is 0x380000b2 which draws a shaded quadrilateral. It means
that unlike the previous quad command this one takes one color per verter and
fills the shape with a Gouraud shading which creates a gradient between those
values. We'll see that this type of shading is trivial to implement in OpenGL.

This command takes 8 parameters: 4 vertex position and their assorted colors.
As for the other drawing commands let’s put a placeholder for the moment:
impl Gpu {

/] ...

/// Handle writes to the GP0 command register
pub fn gpO(&mut self , val: u32) {
if self.gpO_words_remaining = 0 {

/]

let (len, method) =
match opcode {

0x38 =>
(8, Gpu::gp0_quad_shaded_opaque
as fn(&mut Gpu)),
/]
s
}

}

/// GP0(0x38): Shaded Opaque Quadrilateral

fn gpO_quad_shaded_opaque(&mut self) {
println ! (”Draw_quad._shaded”);

}

4.24 GPO Shaded Triangle command

After that we get to the GP0O command 0x300000b2. This command is almost
identical to the one before except that it draws a triangle instead of a quad. As
such it only takes 6 parameters (3 position/color couples):

impl Gpu {
/] ...

/// Handle writes to the GPO command register
pub fn gp0(&mut self , val: u32) {
if self.gpO_words.remaining =— 0 {

/...

let (len, method) =
match opcode {

0x30 =>
(6, Gpu:: gp0O_triangle_shaded_opaque
as fn(&mut Gpu)),
// ..

s
/] ..

134

https://en.wikipedia.org/wiki/Gouraud_shading

/] ..
}

/// GP0(0x30): Shaded Opaque Triangle

fn gpO_triangle_shaded_opaque(&mut self) {
println!(”Draw_triangle .shaded”);
}

4.25 GPO Textured Quadrilateral With Color Blending
command

Our last drawing command for the moment will be 0x2c808080 which is the
fanciest yet: it draws a quadrilateral, maps a texture on it while blending it with
a solid color. It takes 9 parameters:

impl Gpu {

/!

/// Handle writes to the GP0 command register
pub fn gp0(&mut self, val: u32) {
if self.gpO_-words_remaining =— 0 {

/] ...

let (len, method) =
match opcode {

/]
0x2c =>
(9, Gpu::gpO_quad_texture_blend_opaque
as fn(&mut Gpu)),
};
}
/]

}

/// GP0(0x2C): Textured Opaque Quadrilateral
fn gpO_.quad_texture_blend_opaque(&mut self) {
println!(”Draw_quad_texture_blending”);

4.26 GP1 Acknowledge Interrupt command

Once the BIOS has finished displaying the boot logo it attempts to acknowledge
the GPU interrupt by issuing the GP1 command 0x02000000. Of course in our
current implementation we never trigger the interrupt in the first place but we
might as well add a simple implementation anyway:
impl Gpu {

/) ...

/// GP1(0x02): Acknowledge Interrupt

fn gpl-acknowledge_irq(&mut self) {
self.interrupt = false;

}

135

4.27 GP1 Reset Command Buffer command

And we finish this sequence with GP1 command 0x01000000 which clears the
command FIFO. We don’t implement the FIFO itself yet but we can at least
reset the GPO state machine to a default state:

impl Gpu {
/]

/// GP1(0x01): Reset Command Buffer

fn gpl_reset_.command_buffer(&mut self) {
self.gpO_command. clear () ;
self.gpO_words_remaining = 0;
self.gp0_mode = GpOMode : : Command;
// XXX should also clear the command FIFO when we
// implement it

I take the opportunity add a call to this function in gpl_reset since it should
also clear the command buffer.

And that’s it! We have our entire GPU command sequence to display the
boot logo. Now we can implement a basic OpenGL renderer to visualize it all.

5 The GPU: Basic OpenGL renderer for the
boot logo

For our first renderer we’re not going to bother with the Video Display: since
the GPU’s internal video memory has a total resolution of 1024x512 we’ll just
display all of the framebuffer at once and draw the primitives directly on the
screen. We just need to take the draw commands, render them in our framebuffer
in the native internal resolution and display it all. Easy.

The first step is to create a window and retreive an OpenGL context to draw
in it. OpenGL itself doesn’t handle things like window creations since that’s
system specific. There are many libraries out there to take care of that (GLFW,
freeglut, etc...). For my emulator I opted for the SDL2 library, mainly because
I'm familiar with it. I’ll also use this library to handle controller input and, later
on, sound support.

If for some reason you prefer to use an other library (or libraries) to handle
these system-spefic interfaces rest assured that it won’t change anything to the
OpenGL code itself, just the window setup code.

5.1 Window and OpenGL context creation

Here’s the code for creating a window and recovering its OpenGL context with
the SDL2:

use sdl2;

use sdl2::video:: {OPENGL, WindowPos };

use sdl2::video :: GLAttr:: GLContextMajorVersion ;
use sdl2::video:: GLContextMinorVersion;

use gl;

use libc::c_void;

pub struct Renderer {

136

http://www.glfw.org/
http://freeglut.sourceforge.net/
http://libsdl.org/

sdl_context: sdl2::sdl::Sdl,
window: sdl2::video :: Window,
gl_context: sdl2::video :: GLContext,

}

impl Renderer {

pub fn new() —> Renderer {
let sdl_context = sdl2::init (::sdl2::INIT_-VIDEO) .unwrap () ;

sdl2::video:: gl_set_attribute (GLContextMajorVersion, 3);
sdl2 ::video:: gl_set_attribute (GLContextMinorVersion, 3);

let window = sdl2::video :: Window : : new (
&sdl_context ,
» PgX” ,
WindowPos :: PosCentered ,
WindowPos :: PosCentered ,
1024, 512,
PENGL) . unwrap () ;

let gl_context = window. gl_create_context ().unwrap();

gl::load_with (|s]
sdl2::video:: gl_get_proc_address(s).unwrap()
as xconst c_void);

Renderer {
sdl_context: sdl_context ,
window : window ,
gl_context: gl_context ,

The function sd12::init calls the global SDL2 initialization routine. For
now we’re only using the VIDEQ subsystem. In the SDL2 C API this function
doesn’t return anything but the rust bindings return an object that’s used
to call SDL_Quit automatically when it’s destroyed. In C you have to call
SDL_Quit explicitly when your program exits (or whenever you don’t need the
SDL anymore).

After that the two gl_set_attribute calls say that we’re going to use
OpenGL 3.@

Then Window: :new creates the window itself with a resolution of 1024x512
(the resolution of the VRAM) and OpenGL support. I named the window “PSX”
because I don’t have any imagination.

We can retreive the window’s OpenGL context with the gl_create_context
method and then we must load the OpenGL function pointers. You don’t really
need to understand that part in details, it’s some glue between the OpenGL
and SDL libraries, you just need to make sure it’s done before we start calling
OpenGL commands.

Finally we store the SDL context, window and OpenGL context in the newly
created Renderer object. We need to put an instance of this struct in our GPU:
pub struct Gpu {

/!

34 At the time of writing OpenGL 4.5 is the latest version but 3.3 is more widely supported
and should suffice for what we’re doing although we may end up using a couple extensions.

137

https://www.opengl.org/wiki/Load_OpenGL_Functions

/// OpenGL renderer
renderer: opengl:: Renderer,

}
impl Gpu {
pub fn new() —> Gpu {
Gpu {
renderer: opengl:: Renderer::new() ,
}
}
}

If everything works well our emulator should now create a window when
starting up. The window’s contents are garbage however (on my system it
contains a chunk of the screen). We can clear it by issuing the following calls:

impl Renderer {

pub fn new() —> Renderer {

/.
// Clear the window
unsafe {
gl:: ClearColor (0., 0., 0., 1.0);
gl:: Clear (gl :: COLOR.BUFFER.BIT) ;
}
window . gl_swap_window () ;
Renderer {

The unsafe keyword is there because as far as Rust is concerned all OpenGL
calls are a C foreign function interface and are therefore potentially memory
unsafe. The ClearCololﬁfunction sets the clear color (duh): the first three
parameters are the red, green and blue components and the fourth is the alpha
parameter. They all are floating point integers in the range [0.0, 1.0]. In this
case all the color components are 0.0 so the color is black and alpha is set to 1.0
which means it’s fully opaque.

The Clear function then applies this color to the entire color buffer. You’ll
notice that we just give the type of buffer we want to clear as parameter, not a
handle to a specific buffer. That’s the way most of the OpenGL API works: you
“bind” various types of object to an implicit global context and the subsequent
function calls act on the currently bound object of for a given type. In this case
we haven’t bound anything ourselves, by default the color buffer will be the
window’s framebuffer.

The gl_swap_window forces a window update and displays the result of
the previous commands. With this addition the window should now appear
completely black. Progress!

35The OpenGL C API concatenates the “gl” prefix to symbols (“GL_" for macros) so in
C ClearColor would be glClearColor and COLOR_BUFFER_BIT would be GL_COLOR_BUFFER_BIT.
When searching for an OpenGL symbol online it’s sometimes better to use the C form.

138

5.2 Drawing the primitives

Now let’s do something more interesting: drawing the primitives. This is the
part where we’ll have to write a whole lot of OpenGL glue so take a deep breath
and dive in.

Let’s choose a primitive to start with, I've decided to use GP0(0x30),the
gouraud shaded triangle. It’s a simple shape with some basic shading. It has
three vertex, each having a position in VRAM and a color. Let’s create structs
to hold those attributes in a shader-friendly fashion:

/// Position in VRAM.
#[derive (Copy, Clone , Default ,Debug) |
pub struct Position (pub GLshort, pub GLshort);

impl Position {
/// Parse position from a GP0 parameter
pub fn from_gpO(val: u32) —> Position {
let x = val as i16;
let y = (val >> 16) as i16;

Position(x as GLshort, y as GLshort)

}

/// RGB color
#[derive (Copy, Clone , Default ,Debug) |
pub struct Color(pub GLubyte, pub GLubyte, pub GLubyte) ;

impl Color {
/// Parse color from a GP0 parameter
pub fn from_gpO(val: u32) — Color {
let r = val as u8;
let g = (val >> 8) as u8;
let b = (val >> 16) as u8;

Color(r as GLubyte, g as GLubyte, b as GLubyte)

I store the Position as a pair of of GLshorts, OpenGL’s signed 16bit integer
type. The color is stored as a triplet of unsigned bytes, GLubyte. Internally
OpenGL uses floats for screen coordinates and colors but we’ll be able to make
the conversion in the shaders.

We can use these new types to create two arrays: one will contain the three
vertex positions of the triangle in VRAM, the other the associated colors:
impl Gpu {

/!

/// GP0(0x30): Shaded Opaque Triangle
fn gpO_triangle_shaded_opaque(&mut self) {
let positions = |
Position :: from_gp0O(self.gpO0_command[1]),
Position :: from_gp0(self.gp0_command[3]) ,
Position :: from_gpO(self.gpO0_command[5]) ,

E

let colors = |
Color :: from_gp0(self.gpO0_-command[0]) ,
Color :: from_gp0 (self.gp0_command[2]) ,
Color :: from_gp0(self.gpO0_-command[4]) ,

139

15

self .renderer.push_triangle (positions, colors);

Now we need to implement this push_triangle method that will put the

attributes in a list of vertex to render. That’s where the fun begins.

First we need to setup somme buffers to hold the data. There are several
ways to send data to the GPU, I've decided to go with persistently mapped
buffers. The idea is that we're going to ask OpenGL to allocate some memory
that will be shared between the GPU and us. We’ll fill it with our data and

when we'’re ready we’ll tell the GPU to use it to draw the scene. Easy.

To avoid duplicating a bunch of code let’s make a generic Buffer struct

holding an attribute buffer and its mapping:

// Write only buffer with enough size for VERTEX BUFFER _LEN
elements

pub struct Buffer<T> {
/// OpenGL buffer object

object :

GLuint ,

/// Mapped buffer memory
map: xmut T,

}

impl<T: Copy + Default> Buffer<I> {
/// Create a new buffer bound to the current vertex array

/// object.
pub fn new() —> Buffer<I> {

let
let

mut object = 0;
mut memory ;

unsafe {

// Generate the buffer object
gl :: GenBuffers (1, &mut object);

// Bind it
gl :: BindBuffer (gl : : ARRAY BUFFER, object);

// Compute the size of the buffer
let element_size = size_of::<T>() as GLsizeiptr;

let buffer_size = element_size x VERTEXBUFFER_LEN as

GLsizeiptr;

// Write only persistent mapping. Not coherent!

let access = gl::MAP.WRITEBIT | gl:: MAP_PERSISTENT_BIT

i

// Allocate buffer memory

gl:: BufferStorage (gl :: ARRAY BUFFER,
buffer_size ,
ptr::null(),
access) ;

// Remap the entire buffer

memory = gl :: MapBufferRange (gl : : ARRAY BUFFER,
07
buffer_size ,
access) as *mut T;

// Reset the buffer to 0 to avoid hard—to—reproduce

140

}

bugs
// if we do something wrong with unitialized memory
let s = slice::from_raw_parts_mut (memory,
VERTEX BUFFER LEN as

usize);

for x in s.iter_mut () {
xx = Default :: default () ;

}

}

Buffer {
object: object,
map: memory,

}

}

/// Set entry at ‘index‘ to ‘val‘ in the buffer.
pub fn set(&mut self, index: u32, val: T) {
if index >= VERTEXBUFFERLEN {
panic!(” buffer_overflow!”);

}

unsafe {
let p = self .map.offset (index as isize);
*p = val;

}

impl<T> Drop for Buffer<I> {

}

/1
/1]

cons

fn drop(&mut self) {
unsafe
gl:: BindBuffer (gl :: ARRAYBUFFER, self.object);
gl :: UnmapBuffer (gl : : ARRAY BUFFER) ;
gl:: DeleteBuffers (1, &self.object);

Maximum number of vertex that can be stored in an attribute
buffers
t VERTEX BUFFER.LEN: u32 = 64 x 1024;

That’s a lot of code to simply allocate a buffer! Let’s walk through it:

First GenBuffers creates a new buffer object. That doesn’t allocate the
buffer memory, it basically just creates a handle.

This handle is then bound with BindBuffer, from then on the commands
targetting ARRAY BUFFER will use this buffer.

We must then compute the size of the buffer in bytes. I've decided to
hardcode the length of the buffer in VERTEX_BUFFER_LEN, ideally it should
be big enough to hold an entire scene (otherwise we’ll have to make several
draw calls per frame), but not too big in order not to waste memory. We’ll
probably want to better tune that constant later.

Once we know how much room we need we can ask OpenGL to allocate
it for us. We request MAP_WRITE_BIT since we want to write-only access

141

to the buffer and MAP_PERSISTENT BIT to be able to hold the mapping
persistently (instead of having to remap it for each frame).

e Now we can retreive a pointer to this memory location using MapBufferRange
to remap the buffer in the process’ address space.

e To make debugging easier if we mess something up I then reset the buffer’s
memory to zero. This way if we attempt to draw an unused part of the
buffer by mistake we’ll still have a well defined behaviour instead of drawing
random unitialized data.

e The set method will be used to store an entry in the buffer.

e The Drop destructor will cleanup everything when we’re done.

We can add our two buffers to the Renderer right now but creating buffers
without having any shaders to render them isn’t very useful.

5.3 The vertex shader

If you're not familiar with the concept of shaders you should take the time to
read about them a little before we continue. Basically they’re programs executed
by various GPU stages. We’ll only need two shaders for now: the vertex shader
and the fragment shader.

The vertex shader is the first programmable stage in the OpenGL pipeline.
It will receive the vertex coordinates and the colors from our attribute buffers.
It’ll have to convert them from the Playstation VRAM representation to the one
used by OpenGL and pass them on to the next stage:

#version 330 core

in ivec2 vertex_position;
in uvec3 vertex_color;

out vec3 color;

void main() {
// Convert VRAM coordinates (0;1023, 0;511) into
// OpenGL coordinates (—1;1, —1;1)
float xpos = (float(vertex_position.x) / 512) — 1.0;
// VRAM puts 0 at the top, OpenGL at the bottom,
// we must mirror vertically
float ypos = 1.0 — (float(vertex_-position.y) / 256);

gl_Position .xyzw = vec4(xpos, ypos, 0.0, 1.0);

// Convert the components from [0;255] to [0;1]
color = vec3(float(vertex_-color.r) / 255,

float (vertex_color.g) / 255,

float (vertex_color.b) / 255);

OpenGL shader language, also called GLSL, looks a bit like C but don’t
let that fool you, it’s actually quite different. For one you can see that the
parameters and return values are not given in the main prototype, instead they’re
given at the global scope as in and out parameters.

142

https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/OpenGL_Shading_Language

We have two in parameters: the vertex position (a pair of signed integers)
and its color (a triplet of unsigned integers). The main function is called once
for each vertex. Our triangle as three vertices so it’ll be called 3 times.

The shader sets two output variables: color (a triplet of three floats) and
gl _Position which is a a builtin GLSL variable, a vector of four floats. The last
two components of gl Position are the z (depth) coordinate which is always
0 for us since we're drawing in 2D and the w parameter (the homogeneous
component) which should be 1.0 for a position. This last parameter is used for
perspective correct projectio

You can see that the OpenGL horizontal and vertical screen coordinates go
from -1.0 to 1.0 (no matter the actual resolution of the screen) and that the
vertical coordinates go in the opposite direction than the Playstation VRAM
addressing. OpenGL colors are also floats in the range [0.0, 1.0].

You can see that our vertex shader does all the work of converting coordinates
and colors from the Playstation internal representation to the OpenGL format.
In general we’ll want to offload as much computation as possible to the GPU
since I'm expecting the emulation bottleneck to be on the CPU.

After all Playstation graphics are extremely simple compared to modern
games, for instance modern GPUs have gigabytes worth of video RAM compared
to the Playstation’s puny 2MB. Even if we enhance the graphics significantly
our graphic cards shouldn’t break a sweat if we’re careful not to write extremely
poorly optimized shader code.

5.4 The fragment shader

Once the primitive passed through the vertex shader it will be rasterizedm
In the rasterization process the triangle primitive is converted into individual
fragments. In our case the fragments will be the individual screen pixels but
with multisampling enabled you can get several fragments per pixels that get
averaged to produce the final pixel value.

For each fragment in the rasterized primitive the GPU then runs the fragment
shader whose job is to produce the fragment’s color:

#version 330 core

in vec3 color;
out vecd frag_color;

void main() {
frag_color = vecd(color, 1.0);
}

Pretty straightforward: the output color frag_color (the name is arbitrary)
takes the value of the input attribute color and a fourth value which is the [alpha
channel to handle transparent pixels. In our case the pixels are fully opaque so
it’s hardcoded to 1.0.

If you’re not familiar with OpenGL you’re probably puzzled, what’s the value
of this color parameter exactly? A triangle has three vertices, potentially each
with a different color, so which one do we get here?

361f you’re not familiar with homogeneous coordinates| don’t worry, all you have to know for
now is that you have to set the w component to 1.0 for a position and 0.0 for a vector.

37There are actually a couple more stages before that in modern OpenGL like the tesselation
and geometry shaders but we don’t need to bother with that.

143

https://www.opengl.org/sdk/docs/man4/html/gl_Position.xhtml
https://en.wikipedia.org/wiki/Transformation_matrix#Perspective_projection
https://en.wikipedia.org/wiki/Alpha_compositing
https://en.wikipedia.org/wiki/Alpha_compositing
https://en.wikipedia.org/wiki/Homogeneous_coordinates

What happens is that in this case OpenGL tells the GPU to interpolate the
value of the color based on its distance to the three vertices and their respective
color. That means that we’ll get a smooth gradient which is exactly what we
need for the gouraud shading. OpenGL does all the hard work for us!

Figure 1: OpenGL shaded RGB triangle

Figure [I| shows an example of a triangle rendered with our fragment shader:
each of the three vertex is colored using one of the RGB]| colors and we can see
that the GPU interpolates the gradient for each of the pixels inside the triangle.

5.5 Compiling and linking the shaders

We can now piece our shaders together in our Renderer:

pub struct Renderer {

/] ...

/// Vertex shader object

vertex_shader: GLuint,

/// Fragment shader object

fragment_shader: GLuint,

/// OpenGL Program object

program: GLuint,

/// OpenGL Vertex array object
vertex_array-object: GLuint,

/// Buffer containing the vertice positions
positions: Buffer<Position >,

/// Buffer containing the vertice colors
colors: Buffer<Color>,

/// Current number or vertices in the buffers
nvertices: u32,

impl Renderer {

pub fn new() —> Renderer {
/.

// 7 Slurp” the contents of the shader files. Note: this is
// a compile—time thing.

let vs_src = include_str!(”vertex.glsl”);

let fs_src = include_str!(”fragment.glsl”);

// Compile our shaders...
let vertex_shader = compile_shader (vs_src,

144

https://en.wikipedia.org/wiki/RGB_color_model

gl : : VERTEX SHADER) ;
let fragment_shader = compile_shader(fs_src ,
gl : :FRAGMENT SHADER) ;

// ... Link our program...

let program = link_program (&[vertex_shader,
fragment_shader]) ;

// ... And use it.

unsafe {

gl :: UseProgram (program) ;

}

// Generate our vertex attribute object that will hold our
// vertex attributes
let mut vao = O0;
unsafe {
gl:: GenVertexArrays (1, &mut vao);
// Bind our VAO
gl:: BindVertexArray (vao);

}

// Setup the ”position” attribute. First we create
// the buffer holding the positions (this call also
// binds it)

let positions = Buffer::new();

unsafe {
// Then we retreive the index for the attribute in the
// shader
let index = find_program_attrib (program,
”vertex_position”);

// Enable it
gl:: EnableVertexAttribArray (index);

// Link the buffer and the index: 2 GLshort attributes,

// not normalized. That should send the data untouched

// to the vertex shader.

gl:: VertexAttribIPointer (index, 2, gl::SHORT, 0, ptr::
null());

}

// Setup the ”color” attribute and bind it

let colors = Buffer ::new();
unsafe {
let index = find_program_attrib (program,

?vertex_color”);
gl:: EnableVertexAttribArray (index);

// Link the buffer and the index: 3 GLByte attributes,
// not normalized. That should send the data untouched
// to the vertex shader.
gl:: VertexAttribIPointer (index ,

37

gl : : UNSIGNED BYTE,

07

ptr::null());

}

Renderer {
sdl_context: sdl_context ,
window : window ,

145

gl_context: gl_context ,
vertex_shader: vertex_shader ,
fragment_shader: fragment_shader ,
program: program
vertex_array_object: vao,
positions: positions ,

colors: colors,

nvertices: 0,

}
/] ...

Quite a lot of code to go through here. I put the code for our two shaders
described earlier in two files named “vertex.glsl” and “fragment.glsl” respectively.
I retreive their contents here using Rust’s include_str directive. Then I ask
OpenGL to compile both shaders using the compile_shader helper function:

pub fn compile_shader(src: &str, shader_type: GLenum) —> GLuint {
let shader;

unsafe {
shader = gl:: CreateShader(shader_type);
// Attempt to compile the shader
let c_str = CString::new(src.as_bytes()).unwrap();
gl:: ShaderSource (shader, 1, &c_str.as_ptr(), ptr::null());
gl :: CompileShader (shader) ;

// Extra bit of error checking in case we’re not using a
// DEBUG OpenGL context and check_for_errors can’t do it

// properly:
let mut status = gl::FALSE as GLint;

gl :: GetShaderiv (shader, gl::COMPILESTATUS, &mut status);

if status != (gl::TRUE as GLint) {
panic!(”Shader_compilation_failed!”);
}

}

shader

The compilation is always done at runtime when we start the emulator.
Once the shaders are compiled we must link them together to form a complete
OpenGL “program”. This is done by the link program helper function:

pub fn link_program (shaders: &[GLuint]) —> GLuint {
let program;

unsafe {
program = gl :: CreateProgram () ;

for &shader in shaders {

gl :: AttachShader (program, shader);
}
gl :: LinkProgram (program) ;

// Extra bit of error checking in case we’re not using a
// DEBUG OpenGL context and check_for_errors can’t do it

// properly:
let mut status = gl::FALSE as GLint;

146

gl :: GetProgramiv (program, gl::LINK.STATUS, &mut status);

if status != (gl::TRUE as GLint) {
panic!(”OpenGL_program._linking._failed!”);

}

program

Once the program is linked UseProgram activates it. We can then setup our
position and color attributes.

5.6 Vertex array objects

First we need to create a “vertex array object” (VAOs) to old the attributes.
The idea is that if you have different sets of attributes in your application and
you want to be able to switch rapidly you create one vertex array object per set
and you can then switch between them with a single call (instead of one call per
attribute).

We don’t really need more than one set at that point so we just create a
single one with GenVertexArrays and bind it with BindVertexArray.

At last we use our Buffer struct to initialize the positions buffer. We then
need to associate it with the vertex_position attribute in the vertex shader.
In order to do this we use the find program attrib function to recover the
attribute index is the ‘program‘:

/// Return the index of attribute ‘attr‘ in ‘program ‘. Panics if
/// the index isn’t found.

pub fn find_program_attrib (program: GLuint, attr: &str) —> GLuint {
let cstr = CString::new(attr).unwrap().as_ptr();

let index = unsafe { gl:: GetAttribLocation (program, cstr) };

if index < 0 {
panic!(” Attribute_\"{}\” -not_found_in_program” , attr);
}

index as GLuint

We must then enable the attribute with EnableVertexAttribArray and we
describe the format of the buffer with VertexAttribIPointer. This last call is
very important to get right, otherwise the program’s behavior will be potentially
undefined:

e The first parameter is the index of the attribute in the program.

e The second parameter contains the number of elements per verter in the
buffer. For the position we have the x and y coordinates, so that’s two. It
matches our declaration in the vertex shader since we used an ivec2 to
hold this value.

e The third parameter is the type of each element. It must match the type
we're using to represent the values in our rust code. In this case we're
using GLshorts to hold the coordinates so we set it to SHORT.

147

e The fourth parameter is the “stride” which is a number of bytes the GPU
will skip between each value. Since we don’t have any padding in our buffer
we set it to 0.

e The last parameter is an optional pointer to some data that will be copied
as the initial value of the attribute buffer. We don’t have any data to put
in at that point (and we could do it through our Buffer mapping if we
wanted anyway) so we set it to NULL.

After this call our position buffer will be ready for use!

We then go through the same sequence for our color buffer, the only difference
being the parameters to the VertexAttribIPointer call: this time we have
three values per vertex and the type is UNSIGNED_BYTE.

Finally I put it all in the Renderer struct along with an nvertices variable
that will hold the current number of vertices ready to be drawn in the vertex
buffers.

In order to clean everything up properly when we exit we need a destructor
to release the resources:

impl Drop for Renderer {
fn drop(&mut self) {
unsafe {
gl:: DeleteVertexArrays (1, &self.vertex_array_object);
gl::DeleteShader(self.vertex_shader);
gl:: DeleteShader (self.fragment_shader);
gl::DeleteProgram(self .program) ;

5.7 OpenGL rendering and synchronization

Now we have everything to finally implement our push_triangle command. It
will just push the three positions and colors into their respective buffers. However
we need to be careful not to overflow so if the buffers are full we must force an
early draw:

impl Renderer {

/..

/// Add a triangle to the draw buffer

pub fn push_triangle(&mut self ,
positions: [Position; 3],
colors: [Color; 3]) {

// Make sure we have enough room left to queue the vertex
if self.nvertices + 3 > VERTEX BUFFERLEN {
println!(” Vertex_attribute_buffers_full ,_forcing._draw”)

i

self.draw () ;
}

for i in 0..3 {
// Push
self.positions.set(self.nvertices, positions[i]);
self.colors.set(self.nvertices, colors[i]);
self .nvertices 4+= 1;

148

The draw command itself is not very complicated but we need to be careful
to synchronize ourselves properly with the GPU. That means flushing our buffers
before we ask the GPU to start drawing and then waiting for the rendering to
finish before we touch the buffers again:

impl Renderer {

/..

/// Draw the buffered commands and reset the buffers
pub fn draw(&mut self) {
unsafe {
// Make sure all the data from the persistent mappings
// is flushed to the buffer
gl :: MemoryBarrier (gl : : CLIENT_ MAPPED_BUFFER_BARRIER BIT)) ;

gl :: DrawArrays (gl : : TRIANGLES,
07
self .nvertices as GLsizei);

}
// Wait for GPU to complete
unsafe {
let sync = gl::FenceSync (gl ::SYNC.GPUCOMMANDS COMPLETE,
0);
loop {
let r = gl::ClientWaitSync (
sync,
gl : : SYNC_FLUSH.COMMANDS_BIT,
10000000) ;
if r = gl:: ALREADYSIGNALED ||
r = gl :: CONDITION_SATISFIED {
// Drawing done
break ;
}
}
}
// Reset the buffers
self .nvertices = 0;

The call to MemoryBarrier makes sure the data written to the mapped buffer
is visible by the GPU instead of, say, stuck in a CPU cache. We could avoid this
call by mapping the buffer with the MAP_COHERENT BIT access flag set but that
might make writing to the buffers slower so it’s not necessarily better.

The DrawArrays function is where the magic happens: it tells the GPU to
draw nvertices as triangles. Once this command is issued the GPU will start
working asynchronously so we must be careful: if we start pushing new data to
the buffers before the GPU is done we might overwrite attributes that are still
in use which may cause glitches.

To avoid that we simply wait for the GPU to finish by using a fence:
FencSync creates a fence waiting for the current commands to complete and
ClientWaitSync is used to wait for completion.

149

Finally we reset nvertices to 0 to start anew.

This method is actually pretty suboptimal: we stall our emulator completely
when the GPU is working. We could improve this by using double buffering on
for our attributes but let’s leave that for later.

This draw command will render everything but it won’t display anything
until we swap the window’s buffer. We can add a display command to do just
that:

impl Render {

/// Draw the buffered commands and display them
pub fn display(&mut self) {
self.draw () ;

self.window. gl_swap_window () ;

Now we need to figure out when to call this method. Normally we’d want
to call it at each VSYNC, so 60 or 50 times per second depending on the video
mode but we don’t support GPU timings yet. Instead for the time being we can
find a command that the BIOS calls once per frame and put the display call in
there. Once such command seems to be “Set Drawing Offset” so let’s put our
call to display in there:
impl Gpu {

/] ...
/// GPO(OxE5): Set Drawing Offset

fn gpO_-drawing_offset(&mut self) {

// XXX Temporary hack: force display when changing offset
// since we don’t have proper timings
self.renderer.display () ;

We should now finally be ready to draw ou first triangles. If you restart the
emulator you should end up with the image in figure

The two triangles start back-to-back and then move and shrink to their final
position. Since we don’t yet draw the background quad they’re all drawn on top
of each other which gives this color smearing effect. Note that the image has
a weird aspect ratio (2:1) and that the logo is not centered, it’s because we’re
displaying the entire VRAM framebuffer instead of just the 640x480 portion
configured in the video output.

5.8 OpenGL debugging

You might have noticed that there’s not a whole lot of error checking in my
OpenGL code above. We could call ‘GetError* after every OpenGL function but
that’s annoying an noisy. Instead I prefer to use the debug extension.

This extension logs errors, warnings, performance notices and other messages
to an internal queue. We can then call GetDebugMessageLog to retreive the

150

https://www.khronos.org/registry/gles/extensions/KHR/debug.txt

Figure 2: First output of our OpenGL renderer

messaged>}

/// Check for OpenGL errors using ‘gl::GetDebugMessageLog‘. If a

/// severe error is encountered this function panics. If the OpenGL

/// context doesn’t have the DEBUG attribute this sprobablys won’t
do

/// anything.

pub fn check_for_errors () {

let mut fatal = false;

loop {
let mut buffer = vec![0; 4096];
let mut severity = 0;
let mut source = 0;

let mut message_size= 0;
let mut mtype = 0;
let mut id = 0;

let count =
unsafe {
gl :: GetDebugMessageLog (1,

buffer.len () as GLsizei,
&mut source
&mut mtype,
&mut id ,
&mut severity ,
&mut message_size ,
buffer.as_mut_ptr () as *mut

GLchar)
i
if count = 0 {
// No messages left
break;

381'm leaving out the definition of the various Debug* types which are just thin wrappers
around the OpenGL values, as always check the repository if you want to see the entire code.

151

buffer.truncate (message_size as usize);

let message =
match str::from_utf8(&buffer) {
Ok(m) => m,
Err(e) => panic!(”Got_invalid _message:_{}”, e),

)

let source = DebugSource:: from_raw (source);
let severity = DebugSeverity :: from_raw(severity);
let mtype = DebugType:: from_raw (mtype) ;

println ! ("OpenGL_ [{:7}[{:?}|{:7}|0x{:x}]_-{}",
severity , source, mtype, id, message);

if severity.is_fatal() {
// Something is very wrong, don’t die just yet in order
to
// display any additional error message

fatal = true;
}
}
if fatal {
panic!(” Fatal _OpenGL_error”);
}

We can then call the check for_errors method after critical sections: in
‘draw* for instance to check for errors in the past frame but also at the end of
‘new‘ to make sure the initialization went well. There’s one caveat though: the
debug extension only works when we use a debug OpenGL context. We can get
one by setting the CONTEXT_DEBUG attribute before we create the window:
sdl2 ::video:: gl_set_attribute (

GLAttr:: GLContextFlags
sd12 :: video : : GL.CONTEXT DEBUG. bits ()) ;

A debug context might be slower than a normal one though so we’ll probably
want to only activate this for troubleshooting (via a command line flag or
something like that). For now performances don’t matter in the least so we can
leave it enabled at all times.

The error messages themselves are vendor specific but hopefully they should
be helpful. For instance with my radeon card if I mess up my vertex shader by
replacing vec3 by vec4 in the color affectation I get the following message:

OpenGL [High|ShaderCompiler|Error|0x1] 0:19(10):
error: too few components to vecd

5.9 Drawing quadrilaterals

Modern OpenGL doesn’t support quads, only points, lines and triangleﬂ
Fortunately for us, neither does the Playstation GPU! When a quad draw
command is received it’s interpreted as two triangles and drawn that way. This
is significant for gouraud shaded quadrilaterals since it means that only three
vertices are ever used to interpolate the color of any pixel in the quad. For
textured quads it shouldn’t make any difference.

39 Although you can emulate proper quad shading in shaders if you really need to.

152

We can emulate that behavior in a push_quad method:

Impl Renderer {

/// Add a quad to the draw buffer

pub fn push_quad(&mut self ,
positions: [Position; 4],
colors: [Color; 4]) {

// Make sure we have enough room left to queue the vertex.
We
// need to push two triangles to draw a quad, so 6 vertex
if self.nvertices + 6 > VERTEXBUFFERLEN {
// The vertex attribute buffers are full, force an
early
// draw
self.draw () ;

}

// Push the first triangle

for i in 0..3 {
self.positions.set(self.nvertices, positions[i]);
self.colors.set(self.nvertices, colors[i]);
self .nvertices += 1;

}

// Push the 2nd triangle

for i in 1..4 {
self.positions.set(self.nvertices, positions[i]);
self.colors.set(self.nvertices, colors[i]);
self . .nvertices += 1;

We must duplicate the two vertices shared by the two triangles across one of
the quad’s diagonal so we end up with 6 vertices for a single quad. It’s possible
to avoid that duplication (for instance by using indexed rendering) but at that
point it would be premature optimization.

Now all that’s left to do is to is use push_quad to draw the monochrome and
shaded quadrilaterals:

impl Gpu {

/// GP0(0x28): Monochrome Opaque Quadrilateral
fn gp0O_-quad_mono_opaque(&mut self) {
let positions = |
Position :: from_gp0(self.gpO_command[1])
Position :: from_gp0(self.gpO_command[2])
Position :: from_gp0(self.gp0_command[3])
Position :: from_gp0(self.gpO_command [4])

B

// Only one color repeated 4 times
let colors = [Color::from_gp0(self.gpO_command[0]); 4];

self.renderer.push_quad(positions, colors);

}

/// GP0(0x38): Shaded Opaque Quadrilateral

153

fn gpO_quad_shaded_opaque(&mut self) {
let positions = |
Position :: from_gp0(self.gpO_command[1]) ,
Position :: from_gp0(self.gpO0_command [3]) ,
Position :: from_gp0(self.gpO0_command[5]) ,
Position :: from_gpO0(self.gpO0_command[7]) ,

E

let colors = |
Color :: from_gp0
Color :: from_gp0
Color :: from_gp0
Color :: from_gp0

E

self.renderer.push_quad(positions, colors);

self.gp0_command[0]) ,
self.gp0_command[2]) ,
self.gp0_command [4]) ,
self.gpO0_command [6]) ,

o~~~

Even though we use per-vertex colors it’s easy to draw monochrome primitives
by repeating the same color. We have encountered a third quad command,
gpO0_quad_texture_blend opaque but since we don’t support textures we can’t
implement that correctly yet. In the meantime we can use a solid color instead,
it won’t look right but at least we’ll see something:

impl Gpu {

/// GP0O(0x2C): Textured Opaque Quadrilateral
fn gpO_-quad_texture_blend_opaque(&mut self) {
let positions = |
Position :: from_gp0(self.gpO0_command[1])
Position :: from_gp0(self.gp0_command[3])
Position :: from_gp0(self.gp0_command[5])
Position :: from_gp0(self.gpO_command[7])

1;

// XXX We don’t support textures for now, use a solid red
// color instead

let colors = [Color(0x80, 0x00, 0x00); 4];

self.renderer.push_quad(positions, colors);

Lo and behold, we should now have something that looks very much like the
“Sony Computer Entertainment” boot logo, minus the text which is contained in
the textures. Figure [3]shows the expected output.

As before the black area at the right and bottom of the image is due to the
fact that we display the entire framebuffer instead of just the part configured
in the video output. You can see that a single 640x480 image already takes
more than half of the entire VRAM and we’re only displaying a very simple
logo. Game developers back then had to be very careful with VRAM usage
(and memory usage in general). This is also one of the reasons most games are
rendered at lower resolutions like 640x240, but we’ll see that later.

Note that there are two ways to split a quadrilateral in two triangles by
cutting along either diagonal. The choice is significant, figure [f] shows the result
of splitting across the other diagonam You can see that the main “tilted square”

40T modified push_quad: instead of rendering triangles with vertex indexes [0, 1, 2] and

154

Figure 3: Playstation boot logo without textures

Figure 4: Playstation boot logo with bad quad rendering

behind the two triangles is shaded differently. If your emulator’s output looks
like this it means that you’re not rendering the quads in the right order, you
need to split along the other diagonal.

5.10 Draw Offset emulation

Our OpenGL renderer is very basic but we can at least add the draw offset easily.
Of course the most obvious way would be to add it to the Positions before we
put them in the attribute buffer but instead we can have the vertex shader do it
for us!

In order to do this we can declare an “uniform” in the shader code:

/] ...

[1, 2, 3] T used [2, 3, 0] and [3, O, 1].

155

// Drawing offset
uniform ivec2 offset;

void main() {

ivec2 position = vertex_position + offset;

// Convert VRAM coordinates (0;1023, 0;511) into
// OpenGL coordinates (—1;1, —1;1)

float xpos = (float (position.x) / 512) — 1.0;

// VRAM puts 0 at the top, OpenGL at the bottom,
// we must mirror vertically

float ypos = 1.0 — (float (position.y) / 256);

gl_Position .xyzw = vecd (xpos, ypos, 0.0, 1.0);

/]

Uniforms are inputs that are shared across all the intances of the shader. So
instead of having an offset vertex attribute with one entry per vertex we can
have a single variable that will be used for an entire batch of primitives.

To be able to modify the value of the uniform from our code we must retreive
the index like we did for the vertex attributes. We can then set its value using

UniformZilE

impl Renderer {

}

/] ...

/// Index of the ”offset” shader uniform
uniform_offset: GLint,

impl Renderer {

pub fn new() —> Renderer {
/.

// Retreive and initialize the draw offset

let uniform_offset = find_program_uniform (program,
Poffset”);
unsafe {
gl:: Uniform2i(uniform_offset , 0, 0);
}
Renderer {
/).
uniform_offset: uniform_offset ,
}
}

We can now add a method to set the value of the uniform. We need to be
careful to draw the currently buffered primitives before we change the offset
since those were supposed to be drawn with the previous value and might end

up located at the wrong place:

41The 2i part means that the function works on ivec2s, there are other Uniform* functions

for the various other types.

156

impl Renderer {

/] ...

/// Set the value of the uniform draw offset

pub fn set_draw_offset(&mut self, x: il16, y: i16) {
// Force draw for the primitives with the current offset
self .draw () ;

// Update the uniform value

unsafe {
gl:: Uniform?2i(self.uniform_offset ,
x as GLint,
y as GLint);
}

Finally we can get rid of our drawing x offset and drawing y offset
member variables in the GPU and call set_draw_offset directly instead.

The fact that we have to force a partial draw every time the offset is changed
means that in pathological cases this might end up being slower. For instance
if a game draws thounsands of triangles, changing the offset between each one,
we’ll issue thousands of partial draw commands. In this case it would probably
be faster to simply add the offset before we push the Positions in the attribute
buffer.

5.11 Handling SDL2 events and exiting cleanly

Before we move on I want to fix one annoying problem introduced by our brand
new SDL2 window: since we don’t handle SDL events we can’t exit the emulator
cleanly. And since SDL2 catches SIGINT by default we can’t even interrupt our
emulator with ~C anymore.

Fortunately it’s an easy fix: instead of initializing the SDL context in the
Renderer we move it all the way up in the main function and then check for
events in the top level loop. Since we need the SDL context to create the window
we also have to shuffle constructors a bit: I've decided to create the renderer in
the main function then move it into the Gpu constructor which is itself moved
into the Interconnect constructor:

use sdl2::event :: Event;
use sdl2::keycode:: KeyCode;

fn main() {
let bios = Bios::new(&Path::new(”roms/SCPH1001.BIN”)).unwrap () ;

// We must initialize SDL before the interconnect is created
since

// it contains the GPU and the GPU needs to create a window

let sdl_context = sdl2::init (::sdl2::INIT_-VIDEO) .unwrap () ;

let renderer = Renderer::new(&sdl_context);
let gpu = Gpu::new(renderer);
let inter = Interconnect::new(bios, gpu);

let mut cpu = Cpu::new(inter);
let mut event_pump = sdl_context.event_pump () ;

loop {

157

for - in 0..1-000-000 {
cpu.run_next_instruction ();
}

// See if we should quit
for e in event_pump. poll_iter () {
match e {

Event :: KeyDown { keycode: KeyCode:: Escape, .. } =
return ,

Event:: Quit {..} => return,

- :> () ’

When the Quit event is encountered (window closes, received SIGINT etc...)
we return from main, effectively exiting the program. For convenience I also quit
when the Escape key is pressed in the window.

The inner for loop is needed because checking for events before every in-
struction slows everything down very significantly so I only check once for every
million instruction executed.

6 The Interconnect: Generic loads and stores

At this point we have three load and three store methods in our interconnect to
deal with byte, halfword and word accesses. Those implementations look very
similar to each other.

When we implement the debugger and the timings you’ll see that we’ll need
special versions of those methods. At this rate we’ll end up with dozens of
memory access functions that will be very similar but for a few key differences.

This is a lot of potential code duplication. Fortunately we can avoid most of
it by making our code use generics instead of having different flavors for 8, 16
and 32bit loads and store.

The first step is to create a generic Addressable trait:

/// Types of access supported by the Playstation architecture

#[derive (PartialEq ,Eq, Debug) |
pub enum AccessWidth {

Byte = 1,
Halfword = 2,
Word = 4,

/// Trait representing the attributes of a primitive addressable
/// memory location.
pub trait Addressable {
/// Retreive the width of the access
fn width () —> AccessWidth;
/// Build an Addressable value from an u32. If the Addressable
is 8
/// or 16bits wide the MSBs are discarded to fit.
fn from_u32(u32) —> Self;
/// Retreive the value of the Addressable as an u32. If the
/// Addressable is 8 or 16bits wide the MSBs are padded with 0s

fn as_u32(self) —> u32;

158

We can then implement this trait for u8, u16 and u32:

impl Addressable for u8 {
fn width () — AccessWidth {
AccessWidth :: Byte

}

fn from_u32(v: u32) —> u8 {
v as u8

}

fn as_u32(&self) —> u32 {
xself as u32
}

}

impl Addressable for ul6 {
fn width () — AccessWidth {
AccessWidth : : Halfword
}

fn from_u32(v: u32) —> ul6 {
v as ul6
}

fn as_u32(&self) —> u32 {
xself as u32
}

}

impl Addressable for u32 {
fn width () — AccessWidth {
AccessWidth :: Word

}

fn from_u32(v: u32) —> u32 {
v

}

fn as_u32(&self) —> u32 {
*self

}

6.1 Porting the CPU code

We can now factor our various memory access functions by making them generic
over this Addressable trait. On the CPU it looks like this:

impl Cpu {

/!

/// Memory read

fn load<T: Addressable>(&self, addr: u32) —> T {
self .inter.load (addr)

}

/// Memory write
fn store<T: Addressable>(&mut self , addr: u32, val: T) {
if self.sr & 0x10000 != 0 {
// Cache is isolated , ignore write
println!(”Ignoring_store_while_cache_is_isolated”);

159

return ;

}

self.inter.store(addr, val);

We can then replace the various load* and store* functions used in the
CPU code by the generic versions. Most of the time the compiler can’t infer the
type properly (since we're casting all over the place to get the correct width and
sign extension) so we have to explicitly tell it which of u8, ul6 or u32 to use.
For instance our LB implementation becomes:
impl Cpu {

/!

/// Load Byte (signed)

fn op_lb(&mut self ,
instruction: Instruction ,
debugger: &mut Debugger) {

let i = instruction.imm_se();
let t = instruction.t();
let s = instruction.s();

let addr = self.reg(s).wrapping_add(i);

// Cast as i8 to force sign extension
let v = self.load::<u8>(addr, debugger) as i8;

// Put the load in the delay slot
self.load = (t, v as u32);

6.2 Porting the interconnect code

Then we need to port our interconnect code to use the generic interface. We
have to merge the various load and store function in a single generic one. First
the load function:

impl Interconnect {

/] ...

/// Interconnect: load value at ‘addr‘
pub fn load<T: Addressable>(&self , addr: u32) —> T {
let abs_addr = map:: mask_region (addr);

if let Some(offset) = map::RAM. contains (abs_addr) {
return self.ram.load (offset);
}

if let Some(offset) = map::BIOS.contains(abs_addr) {
return self.bios.load(offset);
}

if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println!(7IRQ_control_read_{:x}”, offset);
return Addressable :: from_u32(0);

160

if let Some(offset) = map::DMA. contains (abs_addr) {
return self.dma_reg(offset);

if let Some(offset) = map::GPU.contains (abs_addr) {
return self.gpu.load(offset);

if let Some(offset) = map::TIMERS. contains (abs_addr) {
println ! (” Unhandled._.read _from._timer_register._{:x}”,
offset);
return Addressable:: from_u32(0);

if let Some(-) = map::SPU.contains (abs_addr) {
println!(” Unhandled_read .from_SPU_register_{:08x}",
abs_addr);
return Addressable:: from_u32(0);

if let Some(-) = map:: EXPANSION_1. contains (abs_addr) {
// No expansion implemented. Returns full ones when no
// expansion is present
return Addressable:: from_u32(!0);

}

panic!(”unhandled_load_at_address_{:08x}”, addr);

You can see that the Addressable: : from_u32 function can be used to return
a literal value without having to know the real type being used.
The store function is pretty straightforward:

impl Interconnect {

/] ...

/// Interconnect: store ‘val‘ into ‘addr®

pub fn store<T: Addressable>(&mut self , addr: u32, val: T) {
let abs_addr = map:: mask_region (addr);
if let Some(offset) = map::RAM. contains (abs_addr) {

return self.ram.store(offset , val);
}

if let Some(offset) = map::IRQ.CONTROL. contains (abs_addr) {
println!(7IRQ_control:_{:x}.<-_{:08x}”, offset,
val.as_u32());

return;

if let Some(offset) = map::DMA. contains (abs_addr) {
return self.set_.dma_reg(offset, val);

if let Some(offset) = map::GPU.contains (abs_addr) {
return self.gpu.store(offset , val);

if let Some(offset) = map::TIMERS. contains (abs_addr) {
println!(” Unhandled_write_to_timer_register”);

161

return ;

}

if let Some(-) = map::SPU.contains(abs_addr) {
println!(” Unhandled_write_to_SPU_register”);
return ;

}

if let Some(-) = map:: CACHECONTROL. contains (abs_addr) {
println!(” Unhandled_write_to _ CACHE.CONTROL”) ;
return;

}

if let Some(offset) = map::MEMCONTROL. contains (abs_addr) {
match offset {
0 => // Expansion 1 base address
if val != 0x1f000000 {
panic!(”Bad_expansion.l_base_address”);
}7

4 => // Expansion 2 base address
if val != 0x1f802000 {
panic!(”Bad_expansion_2_base_address”);
}7

- =
println!(” Unhandled.write . to .MEM.CONTROL_register”),

}

return;

}

if let Some(-) = map::RAMSIZE. contains (abs_addr) {
// We ignore writes at this address
return;

}

if let Some(offset) = map:: EXPANSION._2. contains (abs_addr) {
println!(” Unhandled_write_to_expansion.2_register”);
return ;

}

panic!(”unhandled_store_into_address.{:08x}:.{:08x}",
addr, val.as_u32());

6.3 Porting the RAM and BIOS
For the RAM we need to know how many bytes must be loaded or stored. We
can use the Addressable: :width method to figure it out:
impl Ram {
/]

/// Fetch the little endian value at ‘offset *
pub fn load<T: Addressable>(&self, offset: u32) —> T {

let offset = offset as usize;
let mut v = 0;
for i in 0..T::width() as usize {
v |= (self.data[offset + i] as u32) << (i * 8)

162

}

Addressable :: from_u32(v)
}

/// Store the 32bit little endian word ‘val‘ into ‘offset ¢
pub fn store<T: Addressable>(&mut self, offset: u32, val: T) {
let offset = offset as usize;

let val = val.as_u32();

for i in 0..T::width() as usize {
self.data[offset + i] = (val >> (i % 8)) as u8;
}

The BIOS doesn’t have a store method since it’s read-only and we can reuse
the RAM’s load code without any change.

This looping and bit fiddling might seem a little under-optimized but LLVM
seems to handle it well and generates code which looks almost exactly like the
previous non-generic version. And we have less code duplication, so all is good.

6.4 Porting the GPU code

For the GPU I'll be a little more conservative: at this point I'm not sure how it
behaves when we don’t use 32bit for register reads and writes. For this reason
T’ll still just support 32bit access by checking what kind of generic I'm using:

impl Gpu {
/...

pub fn load<T: Addressable>(&self , offset: u32) —> T {

if T::width() != AccessWidth::Word {
panic!(” Unhandled_{:?} _GPU_load”, T::width());

let r =
match offset {
0 => self.read (),
4 => self.status (),
- => unreachable!() ,

s

Addressable :: from_u32(r)

pub fn store<T: Addressable>(&mut self, offset: u32, val: T) {
if T::width() != AccessWidth::Word {
panic!(” Unhandled_{:?} _GPU_load”, T::width());
let val = val.as_u32();
match offset {
0 => self.gp0(val)

4 => self.gpl(val),
_ => unreachable!(),

163

}

6.5 Porting the DMA code

Likewise we only support 32bit access on the DMA registers so we can modify
the code to reflect that:

impl Interconnect {

/] ..

/// DMA register read
fn dma_reg<T: Addressable>(&self, offset: u32) — T {

if T::width() != AccessWidth::Word {
panic!(” Unhandled_{:?} DMA_load” , T::width());
}

Addressable :: from_u32(res)
}

/// DMA register write
fn set.dma.reg<T: Addressable>(&mut self, offset: u32, val: T)

if T::width() != AccessWidth::Word {
panic!(” Unhandled_{:7} DMA_store”, T::width());

let val = val.as_u32();

/...

Now our code should build and behave exactly like it did before. On my
system the performance is the performance is the same as far as I can tell. This
more generic infrastructure will show its usefulness soon enough.

7 The Debugger: Breakpoints and Watchpoints

This section is of optional but having a good debugger can save us a lot of time
later on. Being able to disassemble the code, set breakpoints or watchpoints or
step through the assembly are invaluable tools when we need to understand why
some emulated game doesn’t behave properly in our emulator.

Writing a good debugger frontend can be quite some work however. For
simplicity’s sake I've decided to implement the [GDB remote protocoll over a
local TCP socket. This way I can just implement the low level debugging code
in the emulator and I use a general purpose GDB binary targeting the MIPS
architecture as a frontend. Then I can debug Playstation code almost like any
program using GDB, I can disassemble the code, dump the data etc.... If I run
code that I build myself I can even provide it with debugging symbols and step
through functions and other high level niceties.

You might prefer to design the frontend yourself and integrate it directly
in the emulator. It’s more work but you may add Playstation-specific features

164

more easily (GPU debugging comes to mind). For this reason I'm just going to
describe the low level debugging interface in this guide, you’ll decide what kind
of frontend you want to build on top.

7.1 Debugger memory access

This part is easy, we already have the generic load and store functions in our
Cpu that we can use to access the memory. We can simply pass a reference to
our Cpu in the debugger code and use that directly.

One potential issue with this approach is that loads and stores may have
unintended side-effects when used from the debugger. For instance if we read
from the GPUREAD register (when we properly implement it) we “pop” a word
from the read buffer and it’ll become unavailable when the real Playstation code
wants to read it.

Later on when we implement the timings even reading from from regular
RAM will take a few emulated CPU cycles which will effectively “waste” some
time for the emulated code and might result in a missed interrupt or something
similar.

Fortunately now that we have our generic load and store implementations
we’ll only have to implement a specialized version of those two functions if
the side-effects become unmanageable in debugging code. Those specialized
functions could ignore regular timings and even call specialized code in the
various peripherals to prevent any state change.

For the time being I'll just call the regular load and store functions since
we don’t emulate enough side-effects to make a significant difference anyway.
That might change as me become more accurate.

7.2 Breakpoints

Breakpoints are triggered when a certain instruction gets executed. The instruc-
tion is identified by its memory address. We can store the breakpoint addresses
in a vector:

pub struct Debugger {

/// Vector containing all active breakpoint addresses
breakpoints: Vec<u32>,

We then need a pair of function for adding a deleting a breakpoint. It’s a
good idea to make sure we can’t insert the same address twice: insertions and
deletions are going to be rare while the address lookup will have to happen for
every instruction so we want to keep the list as small as possible:
impl Debugger {

/// Add a breakpoint that will trigger when the instruction at
/// ‘addr‘ is about to be executed.
fn add-breakpoint(&mut self , addr: u32) {
// Make sure we’re not adding the same address twice
if !self.breakpoints.contains(&addr) {
self.breakpoints.push(addr);
}

}
/// Delete breakpoint at ‘addr ‘. Does nothing if there was no
/// breakpoint set for this address.

165

fn del_breakpoint(&mut self , addr: u32) {
self.breakpoints.retain(|&a| a != addr);
}

Finally we can implement the method pc_change that will be called before
every instruction to look for a breakpoint at the current address. Needless to
say this code is in a very critical path and must be as fast as possible:

impl Debugger {

/// Called by the CPU when it ’s about to execute a new
/// instruction. This function is called before xallx CPU
/// instructions so it needs to be as fast as possible.
pub fn pc_change(&mut self, cpu: &mut Cpu) {
if self.breakpoints.contains(&cpu.pc()) {
self.debug(cpu);
}

The debug method is where the debugging frontend should be notified that
the execution stopped and wait for the user to resume the execution.

Using a vector to store the breakpoints might seem sub-optimal since it has
linear lookup time. A tree-based collection could theoritically work in logarithmic
time. We have to consider two things however: we want to optimize for the
common case where no debugging is taking place and no breakpoint is set and
even when we’re debugging we probably won’t be using thousands of breakpoints
simultaneously.

Iterating over an empty vector should be very cheap: a simple test of the
length of the vector and we exit the loop immediately. And even for small
non-empty vectors it will probably be faster than a more complex structure
(strong cache locality, no cache thrashing, no indirections, easy prefetching).

For these reasons I don’t think it’s necessary to bother using anything more
complicated than a good old vector, the constant cost probably matters more
than the linear complexity for our usage.

Finally we can plug pc_change in our CPU:
impl Cpu {

/). ..

/// Run a single CPU instruction and return
pub fn run_next_instruction(&mut self , debugger: &mut Debugger)

// Synchronize the peripherals
self.inter.sync(&mut self.tk);

// Save the address of the current instruction to save in
// ‘EPC‘ in case of an exception.

self.current_pc = self.pc;

// Debugger entrypoint: used for code breakpoints and

stepping
debugger.pc_change(self);

/..

166

pub fn pc(&self) —> u32 {
self.pc
}

I pass the debugger object from the main function in order to be able to start
a debugging session at the press of a key:

fn main() {

/] ...

let mut debugger = Debugger::new() ;
let mut event_pump = sdl_context.event_pump () ;

loop {
for - in 0..1.000-000 {

cpu.run_next_instruction(&mut debugger);
}

// See if we should quit
for e in event_pump. poll_iter () {
match e {

Event :: KeyDown { keycode: KeyCode::Pause, .. } =>
debugger . debug(&mut cpu) ,

Event :: KeyDown { keycode: KeyCode:: Escape, .. } =>
return ,

Event:: Quit {..} => return,

- = ())

In a quick benchmark this debugging code causes a small (but noticeable)
degradation of the performances. I think it’ll probably end up being well worth
it. We could make the compilation of the debugging code optional to make it
possible to have faster binaries when we don’t want debugging but we never
know when we might need it anyway and having several build configurations
makes the code harder to test and could lead to code rot. The debugger could
also potentially be used for cheating in games so it might make sense to leave it
enabled even for “end user” builds.

7.3 Watchpoints

Being able to break on a specific instruction is useful but sometimes we want to
know when a certain location in memory is loaded or modified. In order to do
that we can implement read and write watchpoints that will respectively check
each load and store address and trigger the debugger when a watched address is
encountered.
As for breakpoints we’ll store the watchpoint addresses in vectors:

pub struct Debugger {

/// Vector containing all active read watchpoints

read_watchpoints: Vec<u32>,

/// Vector containing all active write watchpoints

write_watchpoints: Vec<u32>,

167

The methods for adding, removing and testing the watchpoints will therefore
look very similar to the breakpoint implementation:

impl Debugger {

/// Add a breakpoint that will trigger when the CPU attempts to
/// read from ‘addr‘
fn add.read_watchpoint(&mut self , addr: u32) {
// Make sure we’re not adding the same address twice
if !self.read_watchpoints.contains(&addr) {
self .read_watchpoints.push(addr);
}

}

/// Delete read watchpoint at ‘addr ‘. Does nothing if there was
no

/// breakpoint set for this address.

fn del_-read_watchpoint(&mut self, addr: u32) {
self .read_watchpoints.retain (|&a| a != addr);

}

/// Called by the CPU when it’s about to load a value from

memory .
pub fn memory_read(&mut self , cpu: &mut Cpu, addr: u32) {

// XXX: how should we handle unaligned watchpoints? For
instance if we have a watchpoint on address 1 and the
CPU
executes a ‘load32 at‘ address 0, should we break? Also,
should we mask the region?
self.read_watchpoints.contains(&addr) {
println ! (”Read_watchpoint_triggered._at_0x{:08x}”, addr)

.
SN

self.debug(cpu);

}

/// Add a breakpoint that will trigger when the CPU attempts to
/// write to ‘addr‘
fn add_write_.watchpoint(&mut self , addr: u32) {
// Make sure we’re not adding the same address twice
if !self.write_watchpoints.contains(&addr) {
self.write_watchpoints.push(addr);
}

}

/// Delete write watchpoint at ‘addr ‘. Does nothing if there
was no

/// breakpoint set for this address.

fn del_write_watchpoint(&mut self, addr: u32) {
self.write_.watchpoints.retain (|&a| a != addr);

}

/// Called by the CPU when it ’s about to load a value from
memory .
pub fn memory.write(&mut self , cpu: &mut Cpu, addr: u32) {
// XXX: same remark as memory_read for unaligned stores
if self.write_watchpoints.contains(&addr) {
println!(” Write_watchpoint_triggered_at_0x{:08x}”, addr

self .debug(cpu);

168

1}

You can see that I put a few comments about unaligned access and regions,
I’'m not entirely sure what’s the right thing to do here. I guess we’ll see how we
want the debugger to behave as we’re using it.

Now we just have to plug the memory read and write methods in our generic
load and store functions in the CPU:
impl Cpu {

/] ...

/// Memory read
fn load<T: Addressable>(&mut self ,
addr: u32,
debugger: &mut Debugger) —> T {
debugger . memory_read (self , addr);

self.inter.load(&mut self.tk, addr)

}

/// Memory write
fn store<T: Addressable>(&mut self ,
addr: u32,
val: T,
debugger: &mut Debugger) {
debugger . memory_write (self , addr);

if self.sr.cache_isolated () {
self.cache_.maintenance (addr, val);

} else {

self.inter.store(&mut self.tk, addr, val);
}

We've added an additional debugger parameter to these two methods
so we have to pass the debugger reference from run next_instruction to
decode_and_execute and finally to the various load and store methods that
need to do memory access (op_sw, op_lw, op_swr, etc. ..).

There are two issues with this implementation however. First we use this
store method to fetch instructions but we don’t want to trigger a read watchpoint
when we’re loading instructions (that’s what breakpoints are for). The fix is
easy, we just call the interconnect’s load method directly:
impl Cpu {

/..

/// Run a single CPU instruction and return
pub fn run_next_instruction(&mut self , debugger: &mut Debugger)

{

/.

// Fetch instruction at PC

let pc = self.current_pc;

let instruction = Instruction(self.inter.load(pc));
/.

169

An other problem is that you might be using this CPU load method in your
debugger to read the memory’s contents. Obviously you don’t want to recursively
trigger the debugger when you use it to read some memory location where a
watchpoint happens to live. Instead we can create an other method used for
loading data for debugging purposeﬁ I named this method examine:
impl Cpu {

/!

/// Debugger memory read

pub fn examine<T: Addressable>(&mut self , addr: u32) — T {
self.inter.load(&mut self.tk, addr)

}

7.4 Code disassembly and beyond

I didn’t show any disassembler code since GDB does it for me but it shouldn’t
be too difficult to implement since MIPS instructions are fixed width. Just
read the code you want to disassemble 32bits at a time and then implement
something similar to our decode_and_execute method but instead of executing
the instruction you return the disassembled code in a string for instance.

If you want to be fancy and support MISP assembler pseudo-instructions you’ll
have to handle certain instructions specifically, for instance s11 $zero, $zero, 0
could be displayed as nop while addu $1, $2, $zero should be move $1, $2.
Of course it’s still correct if you keep the real instructions instead of the assembler
shorthand but it’s generally more readable if you use the later.

Later on we’ll have to consider adding debugging for the GPU as well
(displaying primitives, textures, exploring linked lists etc. ..).

8 The CPU: Instruction cache

Before we move on to the GPU timings let’s start by implementing the CPU
instruction cache. Without it we won’t be able to emulate the CPU speed
properly since cached code gets executed much faster than instructions that have
to be fetched from RAM. The CPU also has a data cache but it’s not used as a
proper cache so we can leave that for later.

8.1 Instruction cache lookup behavior

The Playstation’s CPU has a 4KB instruction cache that can contain up to 1024
instructions across 256 4-instruction cachelines. The cache is directly mapped
which means that there’s only one possible cacheline for any given memory
address.

Here’s how it works: each cacheline contains enough room for 4 instructions
plus a tag and valid bits. The tag contains the upper 20bits of the physical
address being cached, it is used to make sure we're really getting the data from
the correct memory location and not some other address that happens to alias
the cacheline. Then for each instruction in the cacheline a bit says if the entry

421t can be used as a starting point for a “side-effect free” debugging path as I mentioned in

section E

170

is valid or not. When fetching an instruction if the tag is mismatched or the
entry is not valid it’ll have to be fetched from main memory, otherwise we can
directly use the cached value.

Tag [31:12] | Cacheline [11:4] | Index [3:2] | Word alignment [1:0]
0x80005 | 0x38 | 1 | 0

Table 9: Anatomy of cached address 0x80005384

Let’s take a concrete example shown in table [0} Suppose the CPU wants to
run code from address 0x80005384. First we need to figure out which cacheline
matches this address, for that we need to shift the address two bits to the right
(since we have 4 32bit words per cache line) and then take the 8 LSBs (since
we have 256 cachelines in total). In this case we end up in cacheline number 56
(0x38).

Now that we have identified the cacheline we need to see if it already contains
data for the current address, after all any address ending in 0x38X will match
the same cache location. In order to do that we compare the tag stored in the
line with bits [31:12] of the instruction address, in this case 0x80005. If the tag
doesn’t match we consider it invalid and we have to fetch it from RAM.

If the tag is the one we’re looking for however we just have to check the valid
bit for the instruction we’re looking for. Bits [3:2] give us the location in the
4-word cacheline, bits [1:0] are always 0 since all instructions are Word—ahgneﬂ
so in this case we’re looking for the 2nd word in the cacheline. If the valid bit is
set we can use it directly, otherwise the instruction is invalid and we must fetch
it from main RAM.

8.2 Instruction cache fetch behavior

When an invalid instruction is encountered (either because the line has the wrong
tag or the valid bit is not set) the Playstation cache will will update the tag to
match the current address and then fetch the missing instruction as well as any
following instruction in the same cacheline, but not the one before it.

For instance in the case of address 0x80005384 if we have a cache miss
the instructions at addresses 0x80005384, 0x80005388 and 0x8000538c will be
fetched (words at indexes 1, 2 and 3 respectively) but not 0x80005380 (the word
at index 0). I suppose that if some of the following instructions are already
valid they’re not fetched again but I haven’t tested it and it’s probably not very
common anyway.

43Remember that we generate an exception if we ever end up with a misaligned PC so we
can always assume that it’s correctly aligned after that.

171

List of Tables

I Playstation memory map| 10
12 KSEG2 memory map|. 10
13 SCPH1001.BIN BIOS checksumsl 11
4 R3000 CPU general purpose registers|. 17
15 R3000 CPU special purpose registers| 18
[6_16 to 32bit conversion: influence of sign extension]. 24
[Special cases in dIVISIONS| . . « + « « v v o e e 59
18 DMA Channel Control register description|. 98
19 Anatomy of cached address 0x80005384f 171

List of Figures

I OpenGL shaded RGB triangle| 144
12 First output of our OpenGL renderer|. 151
13 Playstation boot logo without textures|. 155
4 Playstation boot logo with bad quad rendering| 155

172

	Introduction
	Isn't emulation complicated?
	Feedback

	The CPU: Instructions and the memory
	What is a CPU, anyway?
	Architecture
	The code
	The Program Counter register
	Reset value of the PC

	The Playstation memory map
	Implementing the memory map

	The BIOS
	Loading the BIOS
	The interconnect
	Gluing the interconnect to the CPU
	Instruction decoding
	General purpose registers
	The $zero register
	The $ra register

	Special purpose registers
	Implementing the general purpose registers
	LUI instruction
	ORI instruction
	Writing to memory
	Unaligned memory access
	Expansion mapping

	Sign extension
	SW instruction
	SLL instruction
	ADDIU instruction
	RAM configuration register
	J instruction
	Branch delay slots
	OR instruction
	Type safety in the register interface
	CACHE_CONTROL register
	The coprocessors
	MTC0 instruction
	BNE instruction
	ADDI instruction
	Memory loads
	Load delay slots
	LW instruction
	The RAM
	The coprocessor 0 registers
	SLTU instruction
	ADDU instruction
	Regions
	SH instruction
	SPU registers
	JAL instruction
	ANDI instruction
	SB instruction
	Expansion 2
	JR instruction
	LB instruction
	BEQ instruction
	Expansion 1
	RAM byte access
	MFC0 instruction
	AND instruction
	ADD instruction
	Interrupt Control registers
	BGTZ instruction
	BLEZ instruction
	LBU instruction
	JALR instruction
	BLTZ, BLTZAL, BGEZ and BGEZAL instructions
	SLTI instruction
	SUBU instruction
	SRA instruction
	DIV instruction
	MFLO instruction
	SRL instruction
	SLTIU instruction
	DIVU instruction
	MFHI instruction
	SLT instruction
	Interrupt Control read
	Timer registers
	Exceptions
	SYSCALL instruction
	MTLO instruction
	MTHI instruction
	RFE intsruction
	Exceptions and branch delay slots
	ADD and ADDI overflows
	Store and load alignment exceptions
	PC alignment exception
	RAM 16bit store
	DMA registers
	LHU instruction
	SLLV instruction
	LH instruction
	NOR instruction
	SRAV instruction
	SRLV instruction
	MULTU instruction
	GPU registers
	GP0: Draw Mode Setting command

	Interrupt Control 16bit access
	Timer registers 32bit access
	GPUSTAT ``DMA ready'' field
	XOR instruction
	BREAK instructions
	MULT instruction
	SUB instruction
	XORI instruction
	Cop1, cop2 and cop3 opcodes
	Non-aligned reads
	LWL instruction
	LWR instruction

	Non-aligned writes
	SWL instruction
	SWR instruction

	Coprocessor loads and stores
	LWCn instructions
	SWCn instructions

	Illegal instructions

	The DMA: Ordering tables and the GPU
	DMA Control register
	DMA Interrupt register
	DMA Channel Control register
	DMA Base Address register
	DMA Block Control register
	Depth Ordering Tables
	DMA Clear Ordering Table channel
	DMA Block copy
	DMA Linked Lists
	RAM to device GPU block copy

	The GPU: Internal state and first commands
	GPUSTAT register
	GP0 Dram Mode Setting command
	GP0 NOP command
	GP1 Soft Reset command
	The GPU renderer and the video output
	GPUREAD register placeholder
	GP1 Display Mode command
	GP1 DMA direction command
	DMA GP0 commands
	GP0 Set Drawing Area commands
	GP0 Set Drawing Offset command
	GP0 Texture Window command
	GP0 Mask Bit Setting command
	GP1 Display VRAM Start command
	GP1 Display Range commands
	GP0 Monochrome Quadrilateral command
	Interleaved video deadlock workaround
	GP0 Clear Cache command
	GP0 Load Image command
	DMA image transfer
	GP1 Display Enable command
	GP0 Image Store command
	GP0 Shaded Quadrilateral command
	GP0 Shaded Triangle command
	GP0 Textured Quadrilateral With Color Blending command
	GP1 Acknowledge Interrupt command
	GP1 Reset Command Buffer command

	The GPU: Basic OpenGL renderer for the boot logo
	Window and OpenGL context creation
	Drawing the primitives
	The vertex shader
	The fragment shader
	Compiling and linking the shaders
	Vertex array objects
	OpenGL rendering and synchronization
	OpenGL debugging
	Drawing quadrilaterals
	Draw Offset emulation
	Handling SDL2 events and exiting cleanly

	The Interconnect: Generic loads and stores
	Porting the CPU code
	Porting the interconnect code
	Porting the RAM and BIOS
	Porting the GPU code
	Porting the DMA code

	The Debugger: Breakpoints and Watchpoints
	Debugger memory access
	Breakpoints
	Watchpoints
	Code disassembly and beyond

	The CPU: Instruction cache
	Instruction cache lookup behavior
	Instruction cache fetch behavior

